Abstract

Silicon-based (Si-based) photonic crystal waveguide based on antiresonant reflecting optical waveguide (ARROW PCW) structures consisting of 60° bends and Y-branch power splitters were designed and first efficiently fabricated and characterized. The ARROW structure has a relatively large core size suitable for efficient coupling with a single-mode fiber. Simple capsule-shaped topography defects at 60° photonic crystal (PC) bend corners and Y-branch PC power splitters were used for increasing the broadband light transmission. In the preliminary measurements, the propagation losses of the ARROW PC straight waveguides lower than 2  dB/mm with a long length of 1500 μm were achieved. The average bend loss of 60° PC bend waveguides was lower than 3  dB/bend. For the Y-branch PC power splitters, the average power imbalance was lower than 0.6 dB. The results show that our fabricated Si-based ARROW PCWs with 60° bends and Y-branch structures can provide good light transmission and power-splitting ability.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [CrossRef]
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef]
  5. P. Borel, L. Frandsen, M. Thorhauge, A. Harpoth, Y. Zhuang, M. Kristensen, and H. Chong, “Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light,” Opt. Express 11, 1757–1762(2003).
    [CrossRef]
  6. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, and M. Kristensen, “Ultralow-loss 3 dB photonic crystal waveguide splitter,” Opt. Lett. 29, 1623–1625(2004).
    [CrossRef]
  7. L. H. Frandsen, A. Harpøth, P. I. Borel, and M. Kristensen, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921(2004).
    [CrossRef]
  8. A. Têtu, M. Kristensen, L. H. Frandsen, A. Harpøth, P. I. Borel, J. S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Opt. Express 13, 8606–8611 (2005).
    [CrossRef]
  9. Y. Zhang, and B. J. Li, “Ultracompact waveguide bends with simple topology in two-dimensional photonic crystal slabs for optical communication wavelengths,” Opt. Lett. 32, 787–789 (2007).
    [CrossRef]
  10. B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
    [CrossRef]
  11. Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
    [CrossRef]
  12. Y. L. Yang, “Investigation on ARROW-based photonic crystal waveguide devices and 3D copper photonic crystals,” Ph.D. dissertation (National Chiao-Tung University, 2009).
  13. J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.
  14. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
    [CrossRef]
  15. M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, “Directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16, 805–807 (1991).
    [CrossRef]
  16. C. H. Lai, C. K. Sun, and H. C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36, 3590–3592 (2011).
    [CrossRef]
  17. S. H. Hsu and Y. T. Huang, “A novel Mach–Zehnder interferometer based on dual-ARROW structures for sensing applications,” J. Lightwave Technol. 23, 4200–4206 (2005).
    [CrossRef]
  18. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
    [CrossRef]
  19. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
    [CrossRef]
  20. T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

2011 (1)

2009 (1)

2007 (1)

2005 (3)

2004 (4)

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, and M. Kristensen, “Ultralow-loss 3 dB photonic crystal waveguide splitter,” Opt. Lett. 29, 1623–1625(2004).
[CrossRef]

L. H. Frandsen, A. Harpøth, P. I. Borel, and M. Kristensen, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921(2004).
[CrossRef]

2003 (1)

2002 (1)

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

1992 (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

1991 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

Barber, J. P.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Bernini, R.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Borel, P.

Borel, P. I.

Campopiano, S.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Chang, H. C.

Chen, C. H.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Chen, J. H.

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Chong, H.

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Frandsen, L.

Frandsen, L. H.

Harpoth, A.

Harpøth, A.

Hawkins, A. R.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Hsu, S. H.

Huang, Y. T.

Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
[CrossRef]

S. H. Hsu and Y. T. Huang, “A novel Mach–Zehnder interferometer based on dual-ARROW structures for sensing applications,” J. Lightwave Technol. 23, 4200–4206 (2005).
[CrossRef]

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Jensen, J. S.

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

Kristensen, M.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Lai, C. H.

Lederer, F.

Leine, L.

Li, B. J.

Lu, M. F.

Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
[CrossRef]

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Mann, M.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Miao, B. L.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Murakowski, J.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Noda, S.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Okano, M.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Prather, D. W.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Sarro, P. M.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Schmidt, H.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Shi, S. Y.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Shieh, J. M.

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Sigmund, O.

Sun, C. K.

Tamir, T.

T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

Têtu, A.

Thorhauge, M.

Trutschel, U.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Wachter, C.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

Yang, Y. L.

Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
[CrossRef]

Y. L. Yang, “Investigation on ARROW-based photonic crystal waveguide devices and 3D copper photonic crystals,” Ph.D. dissertation (National Chiao-Tung University, 2009).

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Yin, D.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Zeni, L.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Zhang, Y.

Zhuang, Y.

Zhuang, Y. X.

Appl. Phys. Lett. (1)

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Sens. Actuators B (1)

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Other (3)

T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

Y. L. Yang, “Investigation on ARROW-based photonic crystal waveguide devices and 3D copper photonic crystals,” Ph.D. dissertation (National Chiao-Tung University, 2009).

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics