Abstract

Silicon-based (Si-based) photonic crystal waveguide based on antiresonant reflecting optical waveguide (ARROW PCW) structures consisting of 60° bends and Y-branch power splitters were designed and first efficiently fabricated and characterized. The ARROW structure has a relatively large core size suitable for efficient coupling with a single-mode fiber. Simple capsule-shaped topography defects at 60° photonic crystal (PC) bend corners and Y-branch PC power splitters were used for increasing the broadband light transmission. In the preliminary measurements, the propagation losses of the ARROW PC straight waveguides lower than 2dB/mm with a long length of 1500 μm were achieved. The average bend loss of 60° PC bend waveguides was lower than 3dB/bend. For the Y-branch PC power splitters, the average power imbalance was lower than 0.6 dB. The results show that our fabricated Si-based ARROW PCWs with 60° bends and Y-branch structures can provide good light transmission and power-splitting ability.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [CrossRef]
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef]
  5. P. Borel, L. Frandsen, M. Thorhauge, A. Harpoth, Y. Zhuang, M. Kristensen, and H. Chong, “Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light,” Opt. Express 11, 1757–1762(2003).
    [CrossRef]
  6. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, and M. Kristensen, “Ultralow-loss 3 dB photonic crystal waveguide splitter,” Opt. Lett. 29, 1623–1625(2004).
    [CrossRef]
  7. L. H. Frandsen, A. Harpøth, P. I. Borel, and M. Kristensen, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921(2004).
    [CrossRef]
  8. A. Têtu, M. Kristensen, L. H. Frandsen, A. Harpøth, P. I. Borel, J. S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Opt. Express 13, 8606–8611 (2005).
    [CrossRef]
  9. Y. Zhang, and B. J. Li, “Ultracompact waveguide bends with simple topology in two-dimensional photonic crystal slabs for optical communication wavelengths,” Opt. Lett. 32, 787–789 (2007).
    [CrossRef]
  10. B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
    [CrossRef]
  11. Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
    [CrossRef]
  12. Y. L. Yang, “Investigation on ARROW-based photonic crystal waveguide devices and 3D copper photonic crystals,” Ph.D. dissertation (National Chiao-Tung University, 2009).
  13. J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.
  14. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
    [CrossRef]
  15. M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, “Directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16, 805–807 (1991).
    [CrossRef]
  16. C. H. Lai, C. K. Sun, and H. C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36, 3590–3592 (2011).
    [CrossRef]
  17. S. H. Hsu and Y. T. Huang, “A novel Mach–Zehnder interferometer based on dual-ARROW structures for sensing applications,” J. Lightwave Technol. 23, 4200–4206 (2005).
    [CrossRef]
  18. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
    [CrossRef]
  19. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
    [CrossRef]
  20. T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

2011

2009

2007

2005

2004

L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, and M. Kristensen, “Ultralow-loss 3 dB photonic crystal waveguide splitter,” Opt. Lett. 29, 1623–1625(2004).
[CrossRef]

L. H. Frandsen, A. Harpøth, P. I. Borel, and M. Kristensen, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921(2004).
[CrossRef]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

2003

2002

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

1996

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

1992

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

1991

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

Barber, J. P.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Bernini, R.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Borel, P.

Borel, P. I.

Campopiano, S.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Chang, H. C.

Chen, C. H.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Chen, J. H.

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Chong, H.

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Frandsen, L.

Frandsen, L. H.

Harpoth, A.

Harpøth, A.

Hawkins, A. R.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Hsu, S. H.

Huang, Y. T.

Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
[CrossRef]

S. H. Hsu and Y. T. Huang, “A novel Mach–Zehnder interferometer based on dual-ARROW structures for sensing applications,” J. Lightwave Technol. 23, 4200–4206 (2005).
[CrossRef]

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Jensen, J. S.

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

Kristensen, M.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Lai, C. H.

Lederer, F.

Leine, L.

Li, B. J.

Lu, M. F.

Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
[CrossRef]

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Mann, M.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Miao, B. L.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Murakowski, J.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Noda, S.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Okano, M.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Prather, D. W.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Sarro, P. M.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Schmidt, H.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Shi, S. Y.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Shieh, J. M.

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Sigmund, O.

Sun, C. K.

Tamir, T.

T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

Têtu, A.

Thorhauge, M.

Trutschel, U.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Wachter, C.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

Yang, Y. L.

Y. L. Yang, S. H. Hsu, M. F. Lu, and Y. T. Huang, “Photonic crystal slab waveguides based on antiresonant reflecting optical waveguide structures,” J. Lightwave Technol. 27, 2642–2648 (2009).
[CrossRef]

Y. L. Yang, “Investigation on ARROW-based photonic crystal waveguide devices and 3D copper photonic crystals,” Ph.D. dissertation (National Chiao-Tung University, 2009).

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Yin, D.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

Zeni, L.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Zhang, Y.

Zhuang, Y.

Zhuang, Y. X.

Appl. Phys. Lett.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11, 519–527 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60 bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Sens. Actuators B

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B 100, 143–146 (2004).
[CrossRef]

Other

T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

Y. L. Yang, “Investigation on ARROW-based photonic crystal waveguide devices and 3D copper photonic crystals,” Ph.D. dissertation (National Chiao-Tung University, 2009).

J. H. Chen, Y. L. Yang, M. F. Lu, Y. T. Huang, and J. M. Shieh, “Design, fabrication, and characterization of Si-based ARROW photonic crystal waveguides,” presented at the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), Sydney, Australia, 28 Aug.–1 Sept. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

TE/TM band structures in a 2D PC structure.

Fig. 2.
Fig. 2.

Schematic of a designed double-60° PC bend waveguide and the path of the light transmission.

Fig. 3.
Fig. 3.

(a) Schematic of steady-state field distributions through the conventional 60° PC bend waveguide; (b) normalized field intensities at three monitors A, B, and C in the conventional 60° PC bend waveguide shown in (a). The peak values of the field intensities were normalized to 1. The wavelength of the launched field is λ=1.55μm.

Fig. 4.
Fig. 4.

(a) Schematic of steady-state field distributions through the designed 60° PC bend waveguide; (b) normalized field intensities at three monitors A, B, and C in the designed 60° PC bend waveguide shown in (a). The peak values of the field intensities were normalized to 1. The wavelength of the launched field is λ=1.55μm.

Fig. 5.
Fig. 5.

Bend loss spectra of TE-like modes in the conventional and designed 60° PC bend waveguides by the 3D-FDTD simulation.

Fig. 6.
Fig. 6.

Schematic of a designed Y-branch PC power splitter and the path of the light transmission.

Fig. 7.
Fig. 7.

Transmission spectra of the modified Y-branch PC power splitter for various wavelengths and lengths of L2 at one monitor output by the 2D-FDTD simulation: (a) L2=0.0a to 0.4a; (b) L2=0.5a to 1.0a.

Fig. 8.
Fig. 8.

(a) Schematic of steady-state field distributions through the conventional Y-branch PC power splitter; (b) normalized field intensities at two monitors A and B in the conventional Y-branch PC power splitter shown in (a). The peak values of the field intensities were normalized to 1. The wavelength of the launched field is λ=1.55μm.

Fig. 9.
Fig. 9.

(a) Schematic of steady-state field distributions through the designed Y-branch PC power splitter; (b) normalized field intensities at two monitors A and B in the designed Y-branch PC power splitter shown in (a). The peak values of the field intensities were normalized to 1. The wavelength of the launched field is λ=1.55μm.

Fig. 10.
Fig. 10.

Transmission spectra of TE-like modes in the conventional and designed Y-branch PC power splitters at one monitor output by the 3D-FDTD simulation.

Fig. 11.
Fig. 11.

Schematic of a Si-based ARROW structure with (a) a straight PCW, (b) a 60° PC bend waveguide, and (c) a Y-branch PC power splitter.

Fig. 12.
Fig. 12.

The AEI images: (a) to (e) are top-view images and (f) to (g) are cross-section-view images: (a) straight PCW; (b) 60° PC bend waveguide; (c) Y-branch PC power splitter; (d) PCW input; (e) SSC input; (f) hole depth observation at a PCW; (g) ridged waveguide.

Fig. 13.
Fig. 13.

(a) Light spot from an output waveguide of a 60° PC bend waveguide; (b) light spots from two output waveguides of a Y-branch PC power splitter; (c) characterization setup.

Fig. 14.
Fig. 14.

The output power values of the TE-like mode in different lengths of PCWs on one example chip.

Tables (5)

Tables Icon

Table 1. Propagation Losses of the First Three TE and TM Modes in an ARROW Structure with Two Fabry–Perot Cavities

Tables Icon

Table 2. Evaluated Bend Losses of the TE-Like Mode in Designed 60° PC Bend Waveguides with 12.4 μm Shift Distance

Tables Icon

Table 3. Evaluated Bend Losses of the TE-Like Mode in Designed 60° PC Bend Waveguides with 24.8 μm Shift Distance

Tables Icon

Table 4. Average Power Imbalances of Y-Branch PC Power Splitters for the TE-Like Mode with 24.8 μm Separation Distance

Tables Icon

Table 5. Average Power Imbalances of Y-Branch PC Power Splitters for the TE-Like Mode with 49.6 μm Separation Distance

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

di=λ4ni(1nc2ni2+λ24ni2dc2)1/2(2P+1),

Metrics