Abstract

We propose a method for increasing the contour resolution of static ground targets and to overcome the diffraction limit of an optical system installed on top of a satellite. The resolution improvement is obtained by using a sequence of low-resolution images taken from different angles realized by the movement of the satellite platform. The superresolving process is obtained by the generation of relative movement between the inspected object and the a priori known high-resolution background. The relative movement is caused because the images are taken from different angles. The captured set of low-resolution images are decoded by the a priori known high-resolution background obtained from a set of reference images taken only once by a high-resolution camera. The proposed concept is demonstrated via Matlab simulation and laboratory experiments.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Otto and L. Fritz, Die lehre von der bildentstehung im mikroskop von Ernst Abbe (Vieweg Braunschweig, 1910).
  2. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  3. P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).
    [CrossRef]
  4. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986).
    [CrossRef]
  5. D. Mendlovic and A. W. Lohmann, “Space-bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).
    [CrossRef]
  6. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969).
    [CrossRef]
  7. M. Françon, “Amélioration the résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).
    [CrossRef]
  8. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1471 (1966).
    [CrossRef]
  9. A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spektrosk. 9, 204–206 (1960).
  10. W. Lukosz and A. Bachl, “Experiments on superresolution imaging of a reduced object field,” J. Opt. Soc. Am. 57, 163–164 (1966).
    [CrossRef]
  11. A. W. Lohmann and M. A. Grimm, “Superresolution image for one-dimensional objects,” J. Opt. Soc. Am. 56, 1151–1156 (1966).
    [CrossRef]
  12. W. Gartner and A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18–23(1963).
    [CrossRef]
  13. A. Whiting, A. Abouraddy, B. Saleh, M. Teich, and J. Fourkas, “Polarization-assisted transverse and axial optical superresolution,” Opt. Express 11, 1714–1723 (2003).
    [CrossRef]
  14. A. W. Lohmann, and D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964).
    [CrossRef]
  15. A. Cawthorne, D. Purll, and S. Eves, “Very high resolution imaging using small satellites,” in 6th Responsive Space Conference (2008), pp. 1–19.
  16. Committee on Earth Studies, Space Studies Board, The Role of Small Satellites in NASA and NOAA Earth Observation Programs (National Academies, 2000), pp. 22–30.
  17. J. García, Z. Zalevsky, and C. Ferreira, “Superresolved imaging of remote moving targets,” Opt. Lett. 31, 586–588, OSA (2006).
    [CrossRef]
  18. L. Yaroslavsky, B. Fishbain, G. Shabat, and I. Ideses, “Superresolution in turbulent videos: making profit from damage,” Opt. Lett. 32, 3038–3040 (2007).
    [CrossRef]
  19. M. I. Charnotskii, “Imaging in turbulence beyond diffraction limits,” Proc. SPIE 2534, 289–297 (1995).
    [CrossRef]
  20. N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).
  21. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
    [CrossRef]
  22. Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
    [CrossRef]

2009 (1)

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2003 (2)

A. Whiting, A. Abouraddy, B. Saleh, M. Teich, and J. Fourkas, “Polarization-assisted transverse and axial optical superresolution,” Opt. Express 11, 1714–1723 (2003).
[CrossRef]

P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

1997 (1)

1995 (1)

M. I. Charnotskii, “Imaging in turbulence beyond diffraction limits,” Proc. SPIE 2534, 289–297 (1995).
[CrossRef]

1987 (1)

N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).

1986 (1)

1969 (1)

1966 (3)

1964 (1)

1963 (1)

W. Gartner and A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18–23(1963).
[CrossRef]

1960 (1)

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spektrosk. 9, 204–206 (1960).

1952 (1)

M. Françon, “Amélioration the résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).
[CrossRef]

Abouraddy, A.

Bachl, A.

Cawthorne, A.

A. Cawthorne, D. Purll, and S. Eves, “Very high resolution imaging using small satellites,” in 6th Responsive Space Conference (2008), pp. 1–19.

Charnotskii, M. I.

M. I. Charnotskii, “Imaging in turbulence beyond diffraction limits,” Proc. SPIE 2534, 289–297 (1995).
[CrossRef]

Cheol, P. S.

P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Cox, I. J.

Eves, S.

A. Cawthorne, D. Purll, and S. Eves, “Very high resolution imaging using small satellites,” in 6th Responsive Space Conference (2008), pp. 1–19.

Ferreira, C.

Fish, E.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

Fishbain, B.

Fixler, D.

Fourkas, J.

Françon, M.

M. Françon, “Amélioration the résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).
[CrossRef]

Fritz, L.

R. Otto and L. Fritz, Die lehre von der bildentstehung im mikroskop von Ernst Abbe (Vieweg Braunschweig, 1910).

Garcia, J.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

García, J.

Gartner, W.

W. Gartner and A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18–23(1963).
[CrossRef]

Gi, K. M.

P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Grimm, M. A.

Ideses, I.

Kartashev, A. I.

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spektrosk. 9, 204–206 (1960).

Kopeika, N. S.

N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).

Kyu, P. M.

P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Lohmann, A. W.

Lukosz, W.

Mendlovic, D.

Micó, V.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

Otto, R.

R. Otto and L. Fritz, Die lehre von der bildentstehung im mikroskop von Ernst Abbe (Vieweg Braunschweig, 1910).

Paris, D. P.

Purll, D.

A. Cawthorne, D. Purll, and S. Eves, “Very high resolution imaging using small satellites,” in 6th Responsive Space Conference (2008), pp. 1–19.

Saleh, B.

Shabat, G.

Shachar, N.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

Sheppard, C. J. R.

Teich, M.

Toraldo di Francia, G.

Vexberg, Y.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

Whiting, A.

Yaroslavsky, L.

Zalevsky, Z.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

J. García, Z. Zalevsky, and C. Ferreira, “Superresolved imaging of remote moving targets,” Opt. Lett. 31, 586–588, OSA (2006).
[CrossRef]

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
[CrossRef]

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

Appl. Opt. (1)

IEEE Signal Process. Mag. (1)

P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A: Pure Appl. Opt. 11, 1–6 (2009).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

Nuovo Cimento Suppl. (1)

M. Françon, “Amélioration the résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).
[CrossRef]

Opt. Eng. (1)

N. S. Kopeika, “Imaging through the atmosphere for airborne reconnaissance,” Opt. Eng. 26, 1146–1154 (1987).

Opt. Express (2)

Opt. Lett. (2)

Opt. Spektrosk. (1)

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spektrosk. 9, 204–206 (1960).

Proc. SPIE (1)

M. I. Charnotskii, “Imaging in turbulence beyond diffraction limits,” Proc. SPIE 2534, 289–297 (1995).
[CrossRef]

Z. Phys. (1)

W. Gartner and A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18–23(1963).
[CrossRef]

Other (4)

A. Cawthorne, D. Purll, and S. Eves, “Very high resolution imaging using small satellites,” in 6th Responsive Space Conference (2008), pp. 1–19.

Committee on Earth Studies, Space Studies Board, The Role of Small Satellites in NASA and NOAA Earth Observation Programs (National Academies, 2000), pp. 22–30.

R. Otto and L. Fritz, Die lehre von der bildentstehung im mikroskop von Ernst Abbe (Vieweg Braunschweig, 1910).

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Imaging of a target taken from different angles. The dashed ellipses show that the target obscures different parts of the background in every image. In the left image, the camera can see the dashed area and in the right image it cannot.

Fig. 2.
Fig. 2.

Relative movement between target and background.

Fig. 3.
Fig. 3.

Change of target’s projection due to angular scan.

Fig. 4.
Fig. 4.

Numerical simulation results. (a) High-resolution original object; (b) Blurred low-resolution image of the target moving on top of a random white noise; (c) The obtained superresolved reconstruction.

Fig. 5.
Fig. 5.

Illustration of the experimental setup.

Fig. 6.
Fig. 6.

Laboratory experimental results using a noisy background. (a) High-resolution reference image; (b) Captured low-resolution image; (c) The experimentally obtained superresolved reconstruction; (d)–(f) ×4 digital zoom of images (a)–(c).

Fig. 7.
Fig. 7.

Laboratory experimental results using a 3D miniaturized mockup. (a) High-resolution reference image; (b) Captured low-resolution image; (c) The experimentally obtained superresolved reconstruction; (d)–(f) ×4 digital zoom of images (a)–(c).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

v=vhD.
T(x,t)=[1s1(x)]b(xvt)+s(x).
R(x)=k3+k4s(x)p(xx)dxp(0)s1(x).
R(x)=k3+k4s(x)p(xx)dx12πδxe(xx)22(δx)2p(xx)s1(x)dx,
Δθ=2cos1(C).
δα=tan1(δxh).
δt=Dtan(δα)v.
N=Δθδα=2cos1(C)tan1(δxh).
δt=500kmtan(0.4)5km/s=0.7s,
N=2cos1(0.9985)tan1(0.110)=11.

Metrics