Abstract

We investigate the use of a semiconductor optical amplifier operated in the saturation regime as a phase modulator for long range laser radar applications. The nature of the phase and amplitude modulation resulting from a high peak power Gaussian pulse, and the impact this has on the ideal pulse response of a laser radar system, is explored. We also present results of a proof-of-concept laboratory demonstration using phase-modulated pulses to interrogate a stationary target.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Kachelmyer, “Range-Doppler imaging with a laser radar,” The Lincoln Lab. J. 3, 87–118 (1990).
  2. J. Ricklin, B. Schumm, and P. Tomlinson, “Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward,” presented at the Coherent Laser Radar Conference, Snowmass, Colorado, USA, 9–13 July 2007.
  3. W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.
  4. A. V. Jelalian, Laser Radar Systems (Artech, 1991).
  5. G. P. Agrawal, Fiber-Optic Communications Systems (Wiley, 2010).
  6. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).
  7. G. P. Agrawal, “Self-phase modulation and spectral broadening of optical pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [CrossRef]
  8. K. Inoue, “Optical filtering technique to suppress waveform distortion induced in a gain-saturated semiconductor optical amplifier,” Electron. Lett. 33, 885–886 (1997).
    [CrossRef]
  9. F. Vacondio, A. Ghazisaeidi, A. Bononi, and L. A. Rusch, “Low-complexity compensation of SOA nonlinearity for single-channel PSK and OOK,” J. Lightwave Technol. 28, 277–288 (2010).
    [CrossRef]
  10. X. Wei, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41, 554–561(2005).
    [CrossRef]
  11. A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical amplifiers in optical networks,” Opt. Photon. News 12(3), 37–42 (2001).
    [CrossRef]
  12. G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
    [CrossRef]
  13. J. Mellis, “Direct optical phase modulation in semiconductor optical amplifier,” Electron. Lett. 25, 679–680 (1989).
    [CrossRef]
  14. M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).
  15. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).
  16. D. O. Hogenboom and C. A. DimMarzio, “Quadrature detection of a Doppler signal,” Appl. Opt 37, 2569–2572 (1998).
    [CrossRef]
  17. N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
    [CrossRef]
  18. C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” in Ultra-High Speed Optical Transmission Technology, H.-G. Weber and M. Nakazawa, eds. (Springer, 2007), pp. 103–140.

2010 (1)

2005 (1)

X. Wei, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41, 554–561(2005).
[CrossRef]

2001 (1)

A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical amplifiers in optical networks,” Opt. Photon. News 12(3), 37–42 (2001).
[CrossRef]

1998 (1)

D. O. Hogenboom and C. A. DimMarzio, “Quadrature detection of a Doppler signal,” Appl. Opt 37, 2569–2572 (1998).
[CrossRef]

1997 (1)

K. Inoue, “Optical filtering technique to suppress waveform distortion induced in a gain-saturated semiconductor optical amplifier,” Electron. Lett. 33, 885–886 (1997).
[CrossRef]

1991 (1)

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

1990 (1)

A. L. Kachelmyer, “Range-Doppler imaging with a laser radar,” The Lincoln Lab. J. 3, 87–118 (1990).

1989 (3)

G. P. Agrawal, “Self-phase modulation and spectral broadening of optical pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
[CrossRef]

J. Mellis, “Direct optical phase modulation in semiconductor optical amplifier,” Electron. Lett. 25, 679–680 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Self-phase modulation and spectral broadening of optical pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

G. P. Agrawal, Fiber-Optic Communications Systems (Wiley, 2010).

Beck, S. M.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

Bononi, A.

Buck, J. R.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

Buell, W. F.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

Dickinson, R. P.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

DimMarzio, C. A.

D. O. Hogenboom and C. A. DimMarzio, “Quadrature detection of a Doppler signal,” Appl. Opt 37, 2569–2572 (1998).
[CrossRef]

Ghazisaeidi, A.

Grosskopf, G.

G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
[CrossRef]

Hogenboom, D. O.

D. O. Hogenboom and C. A. DimMarzio, “Quadrature detection of a Doppler signal,” Appl. Opt 37, 2569–2572 (1998).
[CrossRef]

Inoue, K.

K. Inoue, “Optical filtering technique to suppress waveform distortion induced in a gain-saturated semiconductor optical amplifier,” Electron. Lett. 33, 885–886 (1997).
[CrossRef]

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech, 1991).

Kachelmyer, A. L.

A. L. Kachelmyer, “Range-Doppler imaging with a laser radar,” The Lincoln Lab. J. 3, 87–118 (1990).

Kopeika, N. S.

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).

Kozlowski, D.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

Ludwig, R.

G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
[CrossRef]

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” in Ultra-High Speed Optical Transmission Technology, H.-G. Weber and M. Nakazawa, eds. (Springer, 2007), pp. 103–140.

Marechal, N. J.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

Mecozzi, A.

A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical amplifiers in optical networks,” Opt. Photon. News 12(3), 37–42 (2001).
[CrossRef]

Mellis, J.

J. Mellis, “Direct optical phase modulation in semiconductor optical amplifier,” Electron. Lett. 25, 679–680 (1989).
[CrossRef]

Mikkelsen, B.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

Olesen, D. S.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

Richards, M. A.

M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

Ricklin, J.

J. Ricklin, B. Schumm, and P. Tomlinson, “Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward,” presented at the Coherent Laser Radar Conference, Snowmass, Colorado, USA, 9–13 July 2007.

Rusch, L. A.

Schnabel, R.

G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
[CrossRef]

Schubert, C.

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” in Ultra-High Speed Optical Transmission Technology, H.-G. Weber and M. Nakazawa, eds. (Springer, 2007), pp. 103–140.

Schumm, B.

J. Ricklin, B. Schumm, and P. Tomlinson, “Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward,” presented at the Coherent Laser Radar Conference, Snowmass, Colorado, USA, 9–13 July 2007.

Storkfelt, N.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

Stubkjaer, K. E.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

Tomlinson, P.

J. Ricklin, B. Schumm, and P. Tomlinson, “Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward,” presented at the Coherent Laser Radar Conference, Snowmass, Colorado, USA, 9–13 July 2007.

Vacondio, F.

Weber, H. G.

G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
[CrossRef]

Weber, H.-G.

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” in Ultra-High Speed Optical Transmission Technology, H.-G. Weber and M. Nakazawa, eds. (Springer, 2007), pp. 103–140.

Wei, X.

X. Wei, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41, 554–561(2005).
[CrossRef]

Wiesenfeld, J. M.

A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical amplifiers in optical networks,” Opt. Photon. News 12(3), 37–42 (2001).
[CrossRef]

Wright, T. J.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

Yamaguchi, M.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

Appl. Opt (1)

D. O. Hogenboom and C. A. DimMarzio, “Quadrature detection of a Doppler signal,” Appl. Opt 37, 2569–2572 (1998).
[CrossRef]

Electron. Lett. (3)

G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Characteristics of semiconductor laser optical amplifier as phase modulator,” Electron. Lett. 25, 1188–1189 (1989).
[CrossRef]

J. Mellis, “Direct optical phase modulation in semiconductor optical amplifier,” Electron. Lett. 25, 679–680 (1989).
[CrossRef]

K. Inoue, “Optical filtering technique to suppress waveform distortion induced in a gain-saturated semiconductor optical amplifier,” Electron. Lett. 33, 885–886 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. Wei, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41, 554–561(2005).
[CrossRef]

G. P. Agrawal, “Self-phase modulation and spectral broadening of optical pulses in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, “Measurement of carrier lifetime and linewidth enhancement factor for 1.5 mm ridge-waveguide laser amplifier,” IEEE Photon. Technol. Lett. 3, 632–634 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Photon. News (1)

A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical amplifiers in optical networks,” Opt. Photon. News 12(3), 37–42 (2001).
[CrossRef]

The Lincoln Lab. J. (1)

A. L. Kachelmyer, “Range-Doppler imaging with a laser radar,” The Lincoln Lab. J. 3, 87–118 (1990).

Other (8)

J. Ricklin, B. Schumm, and P. Tomlinson, “Synthetic aperture ladar for tactical imaging (SALTI) flight test results and path forward,” presented at the Coherent Laser Radar Conference, Snowmass, Colorado, USA, 9–13 July 2007.

W. F. Buell, N. J. Marechal, J. R. Buck, R. P. Dickinson, D. Kozlowski, T. J. Wright, and S. M. Beck, “Synthetic-aperture imaging ladar,” Crosslink, Summer 2004.

A. V. Jelalian, Laser Radar Systems (Artech, 1991).

G. P. Agrawal, Fiber-Optic Communications Systems (Wiley, 2010).

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” in Ultra-High Speed Optical Transmission Technology, H.-G. Weber and M. Nakazawa, eds. (Springer, 2007), pp. 103–140.

M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Potential architecture for a ladar system.

Fig. 2.
Fig. 2.

Definition of the PSLR and 3 dB temporal width of the IPR. The ISLR is the ratio of the energy within the 3 dB temporal width (shaded region) to that outside of the 3 dB temporal width.

Fig. 3.
Fig. 3.

A summary of the impact of the carrier lifetime on the (a) power, (b) phase, (c) power spectral density, and (d) IPR of the output pulse. This simulation assumes α=8, G0=30dB, Ein/Esat=0.1, and a 1 ns FWHM Gaussian pulse at the input to the SOA.

Fig. 4.
Fig. 4.

(a) Impact of the carrier lifetime on the saturated gain and range resolution, defined as the 3 dB width of the IPR. (b) Calculated optimum carrier lifetime as a function of pulse duration. These simulations all assume Ein/Esat=0.1, α=8 and G0=30dB.

Fig. 5.
Fig. 5.

Impact of the carrier lifetime on the ISLR and PSLR of the IPR. This simulation assumes Ein/Esat=0.1, α=8, and G0=30dB.

Fig. 6.
Fig. 6.

Impact of Ein/Esat on the (a) range resolution, which is defined as the 3 dB temporal width of the IPR, and the saturated gain, as well as (b) the ISLR and PSLR of the IPR. This simulation assumes τc=0.5ns α=8 and G0=30dB.

Fig. 7.
Fig. 7.

(a) Range resolution, (b) ISLR, and (c) PSLR of the self-phase-modulated pulse as a function of the unsaturated gain and chirp parameter, assuming τp=1ns, τc is optimized at 0.5 ns and Ein/Esat=0.1.

Fig. 8.
Fig. 8.

IPRs for a SOA-modulated pulse, a 20 μs LFM pulse, and a transform limited Gaussian pulse, all with a range resolution of 3.61 cm. The highest sidelobe level for the amplifier modulated IPR is only 2.5 dB higher than that of the traditional LFM pulse.

Fig. 9.
Fig. 9.

Impact of a ±10% variation in the input pulse duration and energy for the SOA parameters otherwise outlined in Table 1. In each case, we assume that the transmit pulse is monitored and that the matched filter is adjusted to account for these variations.

Fig. 10.
Fig. 10.

Effect of variations in input pulse duration on the (a) matched filter output and (b) range resolution and ISLR for the SOA parameters outlined in Table 1. In each case, the matched filter is fixed and assumes an input pulse duration of τp=1ns.

Fig. 11.
Fig. 11.

Effect of variations in input energy on the (a) matched filter output and (b) range resolution and ISLR for the SOA parameters outlined in Table 1. The matched filter is fixed and assumes an input pulse energy of Ein/Esat=0.1.

Fig. 12.
Fig. 12.

(a) Range resolution as function of pulse duration and chirp parameter for Ein/Esat=0.1. The carrier lifetime is optimized for each pulse duration according to Fig. 4. (b) Range resolution of the temporally broadened asymmetric output pulse as a function of pulse duration if the self-phase modulation is not exploited as additional bandwidth.

Fig. 13.
Fig. 13.

(a) ISLR of the IPR, and (b) PSLR of the IPR as a function of chirp parameter and pulse duration. These simulations assume Ein/Esat=0.1 and G0=30dB. The optimum carrier lifetime is used for each pulse duration.

Fig. 14.
Fig. 14.

Modifications made to the setup of Fig. 1 for the laboratory simulation of self-phase modulation in Gaussian pulses.

Fig. 15.
Fig. 15.

Drive signal sent from the AWG to the AOM for amplitude modulation.

Fig. 16.
Fig. 16.

Drive signal sent from the AWG to the phase modulator.

Fig. 17.
Fig. 17.

Experimental (solid curve) and theoretical (dashed curve) results for the (a) pulse power profile, (b) phase modulation, and (c) IPR of the monitor signal for Gaussian pulses with a phase modulation characteristic of a saturated SOA. The experimental and theoretical broad IPRs for a transmitted asymmetric pulse with no phase modulation are also shown in (c) to demonstrate the improvement gained by exploiting the phase modulation.

Fig. 18.
Fig. 18.

Experimental data collected for a series of transmitted pulses after reflecting from a stationary corner cube. Range compressed images are shown when (a) the phase modulator of Fig. 14 is turned off and (b) when it is turned on. In both cases, the fast-time axis corresponds to the duration of individual pulses and the slow-time axis corresponds to the duration of the pulse sequence. Theoretical IPRs (dashed curves) with and without phase modulation are shown in (c), along with corresponding representative cross-sections of data (solid curves) shown in (a) and (b).

Tables (2)

Tables Icon

Table 1. Assumed SOA Parameters For Optimum Range Resolution and Resulting Output Pulse Parameters

Tables Icon

Table 2. Comparison of the Transmitted Temporal Pulsewidths and IPRs for SOA-Modulated, LFM, and Transform Limited Gaussian Pulses

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ΔR=c2B,
Pout(t)=Pin(t)exp[h(t)]
ϕout(t)=ϕin(t)12αh(t),
dh(t)dt=g0Lh(t)τcPin(t)Esat[exp(h(t))1],
Pin(t)=Einτ0πexp(t2τ02),
dh(t)dt=g0Lh(t)τcEinEsatτ0πexp(t2τ02)[exp(h(t))1].
sb(t)=Pout(t)exp(jϕout(t)),
sr(t)=uMOsb(ttrt),
sm(t)=uMOsb(t).
sM(t)=sr(τ)sm*(τt)dτ=I1{Sr(ω)Sm*(ω)},
sM(t)=uMO2Rsb(ttrt),
Rsb(ttrt)=sb(τtrt)sb*(tτ)dτ.
B=1Δτ3dB.
ΔR=cΔτ3dB2.
St(ω)=|I{sb(t)}|2,

Metrics