Abstract

A fluidic chamber with an elastomeric grating membrane is fabricated. Grating groove spacing is modified through membrane deformation via fluid injection. Tunable diffraction output is demonstrated. At normal incidence, the diffraction angle changes by 14.2° and 9.8° for incident wavelengths 632.8 and 488 nm, respectively, with an injected fluid volume of 1 ml.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aschwanden and A. Stemmer, “Polymeric, electrically tunable diffraction grating based on artificial muscles,” Opt. Lett. 31, 2610–2612 (2006).
    [CrossRef]
  2. Y. Tung and K. Kurabayashi, “Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning,” Appl. Phys. Lett. 86, 161113 (2005).
    [CrossRef]
  3. L. Whitehead and A. Clark, “Variable-spacing diffraction grating employing elastomeric surface waves,” Appl. Opt. 37, 5063–5069 (1998).
    [CrossRef]
  4. R. A. Guerrero, M. W. Sze, and J. R. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 3634–3639 (2010).
    [CrossRef]
  5. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [CrossRef]
  6. W. Qiao, D. Johnson, F. Tsai, S. H. Cho, and Y. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
    [CrossRef]
  7. S. W. Lee and S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  8. H. Son, M. Kim, and Y. Lee, “Tunable-focus liquid lens controlled by antagonistic winding-type SMA actuator,” Opt. Express 17, 14339–14350 (2009).
    [CrossRef]
  9. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  10. F. Tsai, S. H. Cho, Y. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291–293 (2008).
    [CrossRef]
  11. D. Zhang, N. Justis, and Y. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29, 2855–2857 (2004).
    [CrossRef]
  12. H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
    [CrossRef]
  13. R. Marks, D. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lens for opthalmic corrections,” Opt. Lett. 34, 515–517 (2009).
    [CrossRef]
  14. R. Marks, D. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable adaptive compact fluidic phoropter with no mechanical translation of lenses,” Opt. Lett. 35, 739–741 (2010).
    [CrossRef]
  15. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606(2010).
    [CrossRef]
  16. S. Calixto, F. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008).
    [CrossRef]
  17. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34, 2793–2795 (2009).
    [CrossRef]
  18. R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
    [CrossRef]
  19. G. Beadie, M. Sandrock, M. Wiggins, R. Lepkowicz, J. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008).
    [CrossRef]
  20. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
    [CrossRef]
  21. E. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  22. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

2010 (3)

2009 (5)

2008 (3)

2007 (2)

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

S. W. Lee and S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

2006 (2)

2005 (2)

Y. Tung and K. Kurabayashi, “Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning,” Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

2004 (1)

2003 (1)

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

1998 (1)

Anderson, P. A.

Aschwanden, M.

Baer, E.

Barretto, J.

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

Batiller, J. R.

Beadie, G.

Berdichevsky, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Calixto, S.

Chan, B.

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

Chau, F. S.

Cho, S. H.

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Clark, A.

Culaba, I.

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

Fox, D.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Guerrero, R. A.

R. A. Guerrero, M. W. Sze, and J. R. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 3634–3639 (2010).
[CrossRef]

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

Guo, Z.

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Hiltner, A.

Huang, H.

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Johnson, D.

Justis, N.

Kazmierczak, T.

Kim, M.

Kumar, A. S.

Kurabayashi, K.

Y. Tung and K. Kurabayashi, “Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning,” Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

Lee, S.

S. W. Lee and S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, Y.

Lepkowicz, R.

Leung, H. M.

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lo, Y.

Loewen, E.

E. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Marks, R.

Mathine, D.

Peyghambarian, N.

Peyman, G.

Ponting, M.

Popov, E.

E. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Psaltis, D.

Qiao, W.

Ren, H.

Rosete-Aguilar, M.

Sanchez-Marin, F.

Sandrock, M.

Schwiegerling, J.

Shirk, J.

Son, H.

Song, W.

Stemmer, A.

Sze, M. W.

Tsai, F.

Tung, Y.

Y. Tung and K. Kurabayashi, “Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning,” Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

Uy, J.

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

Vasko, B.

Vasko, J.

Whitehead, L.

Wiggins, M.

Wu, B.

Wu, S.

Yang, Y.

Yu, H.

Zhang, D.

D. Zhang, N. Justis, and Y. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29, 2855–2857 (2004).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Zhou, G.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Y. Tung and K. Kurabayashi, “Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning,” Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

S. W. Lee and S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Opt. Commun. (1)

R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

Other (2)

E. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Deformation of an elastomeric grating through fluid injection. (a) A grating surface is imprinted on an initially flat PDMS membrane. The membrane acts as a stretchable wall of a watertight chamber filled with fluid. When additional volume ΔV is introduced, (b) the grating surface is extended as the membrane is pushed out into a spherical shape. Assuming uniform strain across the membrane, the modified grating groove spacing may be determined from the effective radius of curvature R produced by a particular ΔV.

Fig. 2.
Fig. 2.

Fluidic grating system: (a) presented schematically as a sealed plexiglass assembly and (b) as an actual working device.

Fig. 3.
Fig. 3.

(a) Schematic diagram of the transmission setup employed in the diffraction experiments and (b) diffraction pattern for a beam (λ=488nm) at normal incidence, as viewed on the screen.

Fig. 4.
Fig. 4.

Linear variation of diffraction angle with injected fluid volume for two incident wavelengths. The theoretical curves are obtained from the grating equation with the groove spacing increasing as a result of added fluid volume.

Fig. 5.
Fig. 5.

Images of the diffracted beam (λ=632.8nm) during grating actuation. (a) At ΔV=0.3ml, asymmetric deformation of the PDMS membrane produces an elongated intensity profile. As additional fluid is injected (ΔV=0.8ml), the membrane assumes a more spherical curvature and (b) a circular intensity distribution is recovered as the beam scans to the left. Insets: Calculated intensity profiles at an arbitrary propagation distance based on transmission through a lens with varying asymmetry between the vertical and horizontal axes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s=Rϕ=Rcos1(12ro2R2),
12ΔVπR33ro4R2(ro6+9ΔV2π2)=0,
λ=dssinθ,
ds=ssodo,

Metrics