Abstract

In this paper, based on the combination of two modified Savart polariscopes, we present a snapshot imaging polarimeter and show that the carrier frequency is two times higher than that of the snapshot imaging polarimeter using two conventional Savart polariscopes. The signal-to-noise ratio and the spatial resolution of imagery in each channel are improved due to the increase of the carrier frequency when we filter the channels to recover the Stokes vector images. Moreover, compared with conventional imaging polarimetry, the remarkable advantage of the proposed instrument is that it is also simple, compact, miniature, snapshotted, and static (no moving parts). To demonstrate the feasibility of the proposed snapshot imaging polarimeter, the numerical simulation of a design example is presented in detail.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003).
    [CrossRef]
  2. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50, 2283–2293 (2011).
    [CrossRef]
  3. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “Spectrally broadband channeled imaging polarimeter using polarization gratings,” Proc. SPIE 8160, 81600V (2011).
    [CrossRef]
  4. M. W. Kudenov, M. J. Escuti, N. Hagen, E. L. Dereniak, and K. Oka, “Snapshot imaging Mueller matrix polarimeter using polarization gratings,” Opt. Lett. 37, 1367–1369 (2012).
    [CrossRef]
  5. H. Luo, K. Oka, E. DeHoog, M. Kudenov, J. Schwiegerling, and E. L. Dereniak, “Compact and miniature imaging polarimeter,” Appl. Opt. 47, 4413–4417 (2008).
    [CrossRef]
  6. E. DeHoog, H. Luo, K. Oka, E. Dereniak, and J. Schwiegerling, “Snapshot polarimeter fundus camera,” Appl. Opt. 48, 1663–1667 (2009).
    [CrossRef]
  7. K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
    [CrossRef]
  8. K. Oka, R. Suda, M. Ohnuki, D. Miller, and E. L. Dereniak, “Snapshot imaging polarimeter for polychromatic light using Savart plates and diffractive lenses,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThF4.
  9. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971).

2012 (1)

2011 (2)

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50, 2283–2293 (2011).
[CrossRef]

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “Spectrally broadband channeled imaging polarimeter using polarization gratings,” Proc. SPIE 8160, 81600V (2011).
[CrossRef]

2009 (1)

2008 (1)

2006 (1)

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

2003 (1)

DeHoog, E.

Dereniak, E.

Dereniak, E. L.

M. W. Kudenov, M. J. Escuti, N. Hagen, E. L. Dereniak, and K. Oka, “Snapshot imaging Mueller matrix polarimeter using polarization gratings,” Opt. Lett. 37, 1367–1369 (2012).
[CrossRef]

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “Spectrally broadband channeled imaging polarimeter using polarization gratings,” Proc. SPIE 8160, 81600V (2011).
[CrossRef]

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50, 2283–2293 (2011).
[CrossRef]

H. Luo, K. Oka, E. DeHoog, M. Kudenov, J. Schwiegerling, and E. L. Dereniak, “Compact and miniature imaging polarimeter,” Appl. Opt. 47, 4413–4417 (2008).
[CrossRef]

K. Oka, R. Suda, M. Ohnuki, D. Miller, and E. L. Dereniak, “Snapshot imaging polarimeter for polychromatic light using Savart plates and diffractive lenses,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThF4.

Escuti, M. J.

Françon, M.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971).

Hagen, N.

Kaneko, T.

Kudenov, M.

Kudenov, M. W.

Luo, H.

Mallick, S.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971).

Miller, D.

K. Oka, R. Suda, M. Ohnuki, D. Miller, and E. L. Dereniak, “Snapshot imaging polarimeter for polychromatic light using Savart plates and diffractive lenses,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThF4.

Ohnuki, M.

K. Oka, R. Suda, M. Ohnuki, D. Miller, and E. L. Dereniak, “Snapshot imaging polarimeter for polychromatic light using Savart plates and diffractive lenses,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThF4.

Oka, K.

Saito, N.

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

Schwiegerling, J.

Suda, R.

K. Oka, R. Suda, M. Ohnuki, D. Miller, and E. L. Dereniak, “Snapshot imaging polarimeter for polychromatic light using Savart plates and diffractive lenses,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThF4.

Appl. Opt. (3)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “Spectrally broadband channeled imaging polarimeter using polarization gratings,” Proc. SPIE 8160, 81600V (2011).
[CrossRef]

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

Other (2)

K. Oka, R. Suda, M. Ohnuki, D. Miller, and E. L. Dereniak, “Snapshot imaging polarimeter for polychromatic light using Savart plates and diffractive lenses,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThF4.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical layout of an MSP SIP with ray tracing. The double-ended arrows, each tilting at 45° with respect to the edge of the surfaces, depict the optic axes of the calcite plates. Inset I, OPD formation of an MSP between two orthogonal polarization rays for a skewed incident ray. Inset II, four emerging rays off the back surface of the second MSP. The letters “e” (extraordinary) and “o” (ordinary) denote the polarization consequences through the system.

Fig. 2.
Fig. 2.

Optical layout of an SIP using CSPs with ray tracing. The double-ended arrows, each tilting at 45° with respect to the edge of the surfaces, depict the optic axes of the calcite plates. Inset I, OPD formation of a CSP between two orthogonal polarization rays for a skewed incident ray. Inset II, four emerging rays off the back surface of the second CSP.

Fig. 4.
Fig. 4.

Stokes object.

Fig. 5.
Fig. 5.

(a) Simulated image of the SIP using CSPs. (b) Simulated image of the SIP using MSPs. (c) Fourier spectra of (a). (d) Fourier spectra of (b). (e) Top view of (c). (f) Top view of (d). Here, fx and fy denote the spatial frequency. The red, green, and blue marked squares denote the data area that carries the information of S1(x,y), S0(x,y), and S23(x,y), respectively.

Fig. 6.
Fig. 6.

Schematic diagram of the filtering for the signal in frequency (Fourier) space. (a) Filtering using the spatial-frequency filtering (2kΩ×2kΩ) for the signal probed by the SIP using MSPs. (b) Filtering using the spatial-frequency filtering (2kΩ×2kΩ) for the signal probed by the SIP using CSPs. The yellow areas indicate regions of overlap in filters resulting in cross talk of the different channels. (c) Filtering using the spatial-frequency filtering (kΩ×kΩ) for the signal probed by the SIP using CSPs. Bandwidth of filters is reduced to prevent false signature.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ=t[(no2ne2)/(no2+ne2)],
d=2Δ,
OPD=2t[(a2b2)/(a2+b2)]cos(ω)sin(θ),
OPD=2Δsin(θ).
I(x,y)=12S0(x,y)+12S1(x,y)cos(2π×2Ω×y)+14|S23(x,y)|cos(2π×2Ω×(x+y)+{arg[S23(x,y)]})14|S23(x,y)|cos(2π×2Ω×(xy){arg[S23(x,y)]}),
S23(x,y)=S2(x,y)+iS3(x,y);Ω=Δλf,
I(x,y)=12S0(x,y)+12S1(x,y)cos[2π×Ω×(x+y)]+14|S23(x,y)|cos(2π×2Ω×x{arg[S23(x,y)]})14|S23(x,y)|cos(2π×2Ω×y+{arg[S23(x,y)]}),

Metrics