Abstract

A wide-angle color filter for TE-polarization is proposed based on a guided-mode resonant grating selectively coated with a metal film. The effects of the structure parameters to the resonant transmission characteristics are discussed by the rigorous coupled-wave analysis. Its optimal structure was given for a green color filter with a peak transmission of 77.6%, a full width at half-maximum (FWHM) of 120nm, and a good angular tolerance up to ±40°. Compared to the similar structure with a nonresonant dielectric grating, it decreases the FWHM effectively for the resonance induced by the guided-mode resonant grating. The numerical results indicate that the designed structure has a good wide-angle transmission performance.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
    [CrossRef]
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
    [CrossRef]
  3. P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 2006/0147617 (6July2006).
  4. Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phys. Express 5, 022501 (2012).
    [CrossRef]
  5. Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
    [CrossRef]
  6. Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
    [CrossRef]
  7. B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
    [CrossRef]
  8. E. H. Cho, H. S. Kim, B. H. Cheong, P. Oleg, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17, 8621–8629 (2009).
    [CrossRef]
  9. H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17, 12189–12196 (2009).
    [CrossRef]
  10. H. Lochbihler, “Enhanced transmission of TE polarized light through wire gratings,” Phys. Rev. B 79, 245427 (2009).
    [CrossRef]
  11. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals, Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  13. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994).
    [CrossRef]
  14. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]

2012 (1)

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phys. Express 5, 022501 (2012).
[CrossRef]

2010 (1)

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

2009 (5)

2008 (1)

2006 (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

1994 (1)

1986 (1)

1983 (2)

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Chen, L. S.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
[CrossRef]

Chen, P. C.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 2006/0147617 (6July2006).

Cheong, B. H.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

E. H. Cho, H. S. Kim, B. H. Cheong, P. Oleg, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17, 8621–8629 (2009).
[CrossRef]

Chiu, C. H.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 2006/0147617 (6July2006).

Cho, E.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

Cho, E. H.

Cho, Y. S.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

Choi, H. Y.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

E. H. Cho, H. S. Kim, B. H. Cheong, P. Oleg, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17, 8621–8629 (2009).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Kim, H. S.

E. H. Cho, H. S. Kim, B. H. Cheong, P. Oleg, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17, 8621–8629 (2009).
[CrossRef]

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

Kim, S. H.

Kuo, H. L.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 2006/0147617 (6July2006).

Lee, H. S.

Lee, K. D.

Lee, S. S.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phys. Express 5, 022501 (2012).
[CrossRef]

Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
[CrossRef]

Lochbihler, H.

H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17, 12189–12196 (2009).
[CrossRef]

H. Lochbihler, “Enhanced transmission of TE polarized light through wire gratings,” Phys. Rev. B 79, 245427 (2009).
[CrossRef]

Long, L. L.

Ma, D. J.

Moharam, M. G.

Oleg, P.

Ordal, M. A.

Park, C. H.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phys. Express 5, 022501 (2012).
[CrossRef]

Park, J. D.

Park, N. C.

Park, Y. P.

Pommet, D. A.

Prudnikov, O. N.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Shin, S. T.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

Sohn, J. S.

Ward, C. A.

Xianyua, W.

Ye, Y.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
[CrossRef]

Yoon, Y. T.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phys. Express 5, 022501 (2012).
[CrossRef]

Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
[CrossRef]

Yu, J.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

Yu, L. B.

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 2006/0147617 (6July2006).

Zhang, H.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Zhou, Y.

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. S. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48, 5035–5039 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Express (1)

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal–dielectric resonant structure,” Appl. Phys. Express 5, 022501 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94, 213104 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

Y. Ye, H. Zhang, Y. Zhou, and L. S. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun. 283, 613–616 (2010).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

H. Lochbihler, “Enhanced transmission of TE polarized light through wire gratings,” Phys. Rev. B 79, 245427 (2009).
[CrossRef]

Other (1)

P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, “Color filter and method of fabricating the same,” U. S. patent application 2006/0147617 (6July2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the proposed structure. Device consists of four parts: a substrate, a dielectric guided-mode resonant grating, a metal wire grating, and an overlay.

Fig. 2.
Fig. 2.

Transmission characteristics of the proposed structure for TE-polarized light: (a) the transmission characteristics, and (b) the peak transmission and the FWHM. Structure parameters: Λ=0.33μm, h2=0.06μm, h3=0.02μm, f=0.39, n1=2, n2=1.49, h1=0.10.5μm in steps of 0.01 μm.

Fig. 3.
Fig. 3.

Transmission characteristics of the proposed structure for TE-polarized light: (a) the transmission characteristics, and (b) the peak transmission and the FWHM. Structure parameters: Λ=0.33μm, h1=0.24μm, h2=0.06μm, h3=0.02μm, n1=2, n2=1.49, f=0.20.7 in steps of 0.01.

Fig. 4.
Fig. 4.

Transmission characteristics of the proposed structure for TE-polarized light: (a) the transmission characteristics, and (b) the peak transmission and the FWHM. Structure parameters: Λ=0.33μm, h1=0.24μm, h2=0.06μm, h3=0.02μm, f=39, n2=1.49, n1=1.53 in steps of 0.1.

Fig. 5.
Fig. 5.

Transmission characteristics for n1=1.5 and n1=2.

Fig. 6.
Fig. 6.

Field distributions for 496 nm at normal incidence: (a) n1=1.5; (b) n1=2. Light is incident from the top of the structure. Lines depict schematically the profile of the structure. Horizontal and vertical axes measure the dimension of the structure.

Fig. 7.
Fig. 7.

Transmission characteristics of the proposed structure for TE-polarized light when the incident angle increases from 0° to 30° in steps of 5°: (a) the transmission characteristics, and (b) the peak transmission and the FWHM. Structure parameters: Λ=0.33μm, h1=0.24μm, h2=0.06μm, h3=0.02μm, f=39, n1=2, n2=1.49, φ=5°30° in steps of 1°.

Fig. 8.
Fig. 8.

Transmission characteristics of a green color filter for TE-polarized light when the incident angle θ changes from 40° to 40° in steps of 10°. The angle θ>0 means it measured clockwise from the grating normal while the angle θ<0 means it measured counterclockwise from the grating normal.

Fig. 9.
Fig. 9.

Transmission characteristics of color filters for TE-polarized light when the incident angle θ changes from 40° to 40° in steps of 10°: (a) the blue color filter, and (b) the red color filter. The angle θ>0 means it measured clockwise from the grating normal, while the angle θ<0 means it measured counterclockwise from the grating normal.

Metrics