Abstract

A widely tunable optical filter with variable bandwidth has been demonstrated based on the thermal effect on cholesteric liquid crystals. The central wavelength can be widely tuned from 826 to 517 nm and the bandwidth can be varied from 10 to 70 nm. It will have potential applications in many fields, especially in telecommunications and multi-spectral/hyper-spectral imaging systems.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
    [CrossRef]
  2. X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, “Tunable spatial demultiplexer based on the Fabry–Perot filter,” Opt. Express 14, 8470–8475 (2006).
    [CrossRef]
  3. H. Macleod, Thin-Film Optical Filters (McGraw-Hill, 1989).
  4. R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Optical Interference Coatings (Optical Society of America, 2001), paper WA2.
  5. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520–10532 (2007).
    [CrossRef]
  6. L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
    [CrossRef]
  7. J. Floriot, F. Lemarchand, and M. Lequime, “Solid-spaced filters: an alternative for narrow bandpass applications,” Appl. Opt. 45, 1349–1355 (2006).
    [CrossRef]
  8. S. S. Wang and R. Magnussom, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995).
    [CrossRef]
  9. L. J. Zhou, T. Ye, and J. P. Chen, “Waveguide self-coupling based reconfigurable resonance structure for optical filtering and delay,” Opt. Express 19, 8032–8044 (2011).
    [CrossRef]
  10. S. T. Wu, “Design of a liquid crystal based tunable electro-optic filter,” Appl. Opt. 28, 48–52 (1989).
    [CrossRef]
  11. Q. Yu, Z. Pan, L.-S. Yan, and A. E. Willner, “Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection,” J. Lightwave Technol. 20, 2267–2271 (2002).
    [CrossRef]
  12. P. E. Buchsbaum and J. D. Lane, “Tunable variable bandpass optical filter,” U.S. patent 6,700,690 (2March2004).
  13. Y. H. Ding, M. H. Pu, L. Liu, J. Xu, C. Peucheret, X. L. Zhang, D. X. Huang, and H. Y. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19, 6462–6470 (2011).
    [CrossRef]
  14. Y. Huang and S. Zhang, “Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals,” Opt. Lett. 36, 4563–4565 (2011).
    [CrossRef]
  15. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
    [CrossRef]
  16. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photo-induced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012).
    [CrossRef]
  17. J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
    [CrossRef]
  18. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
    [CrossRef]
  19. P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011).
    [CrossRef]
  20. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
    [CrossRef]
  21. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
    [CrossRef]
  22. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
    [CrossRef]
  23. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
    [CrossRef]
  24. J. Li, S. Gauza, and S. T. Wu, “Temperature effect on the liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004).
    [CrossRef]
  25. Y. Huang, Y. Zhou, and S. T. Wu, “Lasing in dye-doped photonic liquid crystal devices,” Mol. Cryst. Liq. Cryst. 453, 251–262 (2006).
    [CrossRef]
  26. L. Li, Y. Jiang, and S. M. Faris, “Circularly polarizing reflective material having super broad-band reflection and transmission characteristics and method of fabricating and using same in drivers applications,” U.S. patent 6,034,753(7March2000).

2012 (1)

2011 (4)

2009 (1)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[CrossRef]

2007 (1)

2006 (7)

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[CrossRef]

J. Floriot, F. Lemarchand, and M. Lequime, “Solid-spaced filters: an alternative for narrow bandpass applications,” Appl. Opt. 45, 1349–1355 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[CrossRef]

X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, “Tunable spatial demultiplexer based on the Fabry–Perot filter,” Opt. Express 14, 8470–8475 (2006).
[CrossRef]

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Y. Huang, Y. Zhou, and S. T. Wu, “Lasing in dye-doped photonic liquid crystal devices,” Mol. Cryst. Liq. Cryst. 453, 251–262 (2006).
[CrossRef]

2005 (1)

2004 (2)

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on the liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

2003 (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

2002 (1)

1999 (1)

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

1995 (1)

1989 (1)

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Buchsbaum, P. E.

P. E. Buchsbaum and J. D. Lane, “Tunable variable bandpass optical filter,” U.S. patent 6,700,690 (2March2004).

Cao, H.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Chen, B.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Chen, J. P.

Chen, L. R.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[CrossRef]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[CrossRef]

Cooper, D. J. F.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

Crooker, B.

P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011).
[CrossRef]

DeRose, C. T.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Ding, Y. H.

Dong, C.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Doyle, C.

Fallahi, M.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Faris, S. M.

L. Li, Y. Jiang, and S. M. Faris, “Circularly polarizing reflective material having super broad-band reflection and transmission characteristics and method of fabricating and using same in drivers applications,” U.S. patent 6,034,753(7March2000).

Floriot, J.

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Gan, H.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Gauza, S.

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on the liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

Geng, J.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Golmohammadi, S.

Gu, P.

Gu, X.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

Gvozdovskyy, I.

Hanelt, E.

P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011).
[CrossRef]

Huang, D. X.

Huang, Y.

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[CrossRef]

Jen, A. K.-Y.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Jiang, Y.

L. Li, Y. Jiang, and S. M. Faris, “Circularly polarizing reflective material having super broad-band reflection and transmission characteristics and method of fabricating and using same in drivers applications,” U.S. patent 6,034,753(7March2000).

Lane, J. D.

P. E. Buchsbaum and J. D. Lane, “Tunable variable bandpass optical filter,” U.S. patent 6,700,690 (2March2004).

Lemarchand, F.

Lequime, M.

Li, J.

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on the liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

Li, L.

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
[CrossRef]

L. Li, Y. Jiang, and S. M. Faris, “Circularly polarizing reflective material having super broad-band reflection and transmission characteristics and method of fabricating and using same in drivers applications,” U.S. patent 6,034,753(7March2000).

Li, M.

Liu, L.

Liu, X.

Loka, H. S.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

Luo, J.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Ma, Z.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Macleod, H.

H. Macleod, Thin-Film Optical Filters (McGraw-Hill, 1989).

Magnussom, R.

Manevich, M.

P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011).
[CrossRef]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Moravvej-Farshi, M. K.

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[CrossRef]

Norwood, R. A.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

O’Brien, N. A.

R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Optical Interference Coatings (Optical Society of America, 2001), paper WA2.

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Ou, H. Y.

Pan, Z.

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Peucheret, C.

Peyghambarian, N.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Pu, M. H.

Rostami, A.

Sargent, R. B.

R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Optical Interference Coatings (Optical Society of America, 2001), paper WA2.

Serbina, M.

Shi, L.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Shibaev, P. V.

P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011).
[CrossRef]

Smith, P. W. E.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

Sun, X.

Tam, R.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

Tang, B.

Wang, D.

Wang, S. S.

Willner, A. E.

Wu, S. T.

Xu, J.

Yamaguchi, R.

Yan, L.-S.

Yang, H.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Yaroshchuk, O.

Ye, T.

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Yu, H.

Yu, Q.

Zarifkar, A.

Zhang, H.

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

Zhang, J.

Zhang, L.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

Zhang, S.

Zhang, X. L.

Zhou, L. J.

Zhou, Y.

Adv. Mater. (1)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006).
[CrossRef]

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[CrossRef]

P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[CrossRef]

Electron. Lett. (1)

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on the liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Mol. Cryst. Liq. Cryst. (1)

Y. Huang, Y. Zhou, and S. T. Wu, “Lasing in dye-doped photonic liquid crystal devices,” Mol. Cryst. Liq. Cryst. 453, 251–262 (2006).
[CrossRef]

Opt. Express (8)

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
[CrossRef]

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[CrossRef]

X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, “Tunable spatial demultiplexer based on the Fabry–Perot filter,” Opt. Express 14, 8470–8475 (2006).
[CrossRef]

S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520–10532 (2007).
[CrossRef]

Y. H. Ding, M. H. Pu, L. Liu, J. Xu, C. Peucheret, X. L. Zhang, D. X. Huang, and H. Y. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19, 6462–6470 (2011).
[CrossRef]

L. J. Zhou, T. Ye, and J. P. Chen, “Waveguide self-coupling based reconfigurable resonance structure for optical filtering and delay,” Opt. Express 19, 8032–8044 (2011).
[CrossRef]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photo-induced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012).
[CrossRef]

Opt. Lett. (1)

Other (4)

P. E. Buchsbaum and J. D. Lane, “Tunable variable bandpass optical filter,” U.S. patent 6,700,690 (2March2004).

H. Macleod, Thin-Film Optical Filters (McGraw-Hill, 1989).

R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Optical Interference Coatings (Optical Society of America, 2001), paper WA2.

L. Li, Y. Jiang, and S. M. Faris, “Circularly polarizing reflective material having super broad-band reflection and transmission characteristics and method of fabricating and using same in drivers applications,” U.S. patent 6,034,753(7March2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Device configuration and (b) schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

(a) Reflection spectra of the CLC at 23.8 °C (curve 1), 25.2 °C (curve 2), and 40 °C (curve 3), and (b) central wavelength of the CLC’s reflection band as a function of the temperature.

Fig. 3.
Fig. 3.

Simulated (solid line) and measured (dotted line) reflection band of the CLC.

Fig. 4.
Fig. 4.

Reflection bandwidth of the CLC as a function of the temperature.

Fig. 5.
Fig. 5.

(a) Output reflection spectra when the two CLCs are at 23.8 °C (curve 1), 25.2 °C (curve 2), and 40 °C (curve 3) simultaneously, and (b) the output central wavelength of the filter as a function of the temperature.

Fig. 6.
Fig. 6.

Reflection spectra when the temperature on one of the CLCs is kept at 40 °C and the other one is at 40 °C (curve 1), 32 °C (curve 2), 28 °C (curve 3), and 27.2 °C (curve 4).

Metrics