Abstract

Hybrid integrated photodetectors with flat-top steep-edge spectral responses that consist of an Si-based multicavity Fabry–Perot (F–P) filter and an InP-based p-i-n absorption structure (with a 0.2 μm In0.53Ga0.47As absorption layer), have been designed and fabricated. The performance of the hybrid integrated photodetectors is theoretically investigated by including key factors such as the thickness of each cavity, the pairs of each reflecting mirror, and the thickness of the benzocyclobutene bonding layer. The device is fabricated by bonding an Si-based multicavity F–P filter with an InP-based p-i-n absorption structure. A hybrid integrated photodetector with a peak quantum efficiency of 55% around 1549.2 nm, the 0.5dB band of 0.43 nm, the 25 dB band of 1.06 nm, and 3 dB bandwidth more than 16 GHz, is simultaneously obtained. Based on multicavity F–P structure, this device has good flat-top steep-edge spectral response.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100 G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
    [CrossRef]
  2. Y. F. Zhou, Y. Q. Huang, X. F. Duan, X. Y. Fan, and X. M. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
    [CrossRef]
  3. Z. G. Wu, S. Honda, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Tunable monolithic DWDM band-selection interleaver filter switch on silicon-on-insulator substrate,” J. Lightwave Technol. 26, 3363–3368 (2008).
    [CrossRef]
  4. Q. J. Wang, Y. Zhang, and Y. C. Soh, “Thin-film III–V photodetectors integrated on silicon-on-insulator photonics ICs,” J. Lightwave Technol. 25, 1053–1060 (2007).
    [CrossRef]
  5. R. Slavik and S. LaroRhelle, “Large-band periodic filters for DWDM using multiple-superimposing fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1704–1706(2002).
    [CrossRef]
  6. Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
    [CrossRef]
  7. L. R. Chen, “Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).
    [CrossRef]
  8. Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012).
    [CrossRef]
  9. E. Atanassova and D. Spasov, “Thermal Ta2O5 alternative to SiO2 for storage capacitor application,” Microelectron. Reliab. 42, 1171–1177 (2002).
    [CrossRef]
  10. D. H. Kim, H. J. Song, and C. H. Roh, “Improved spectral response of an InAs QD RC-SACM-APD with Ta2O5/SiO2 DBRs,” in The 7th International Conference on Nanotechnology (IEEE, 2007), pp. 681–685.
  11. R. Zhang and R. R. Mansour, “Low-cost dielectric-resonator filters with improved spurious performance,” IEEE Trans. Microwave Theor. Tech. 55, 2168–2175 (2007).
    [CrossRef]
  12. Z. Sheng, L. Liu, J. Brouckaert, S. He, and D. V. Thourhout, “InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides,” Opt. Express 18, 1756–1761 (2010).
    [CrossRef]
  13. J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007).
    [CrossRef]
  14. J. Michel, J. Liu, and C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4, 527–534 (2010).
    [CrossRef]
  15. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
    [CrossRef]
  16. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13, 10102–10108 (2005).
    [CrossRef]
  17. W. H. Ren, P. L. Tao, Z. W. Tan, Y. Liu, and S. S. Jian, “Theoretical and experimental investigation of the mode-spacing of fiber Bragg grating Fabry–Perot cavity,” Chin. Opt. Lett. 7, 775–777 (2009).
    [CrossRef]
  18. X. F. Duan, Y. Q. Huang, X. M. Ren, Q. Wang, and S. W. Cai, “Long wavelength multiple resonant cavities RCE photodetectors on GaAs substrates,” IEEE Trans. Electron Devices 58, 3948–3953 (2011).
    [CrossRef]
  19. X. F. Duan, Y. Q. Huang, X. M. Ren, H. Huang, S. X. Xie, Q. Wang, and S. W. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889(2010).
    [CrossRef]
  20. X. F. Duan, Y. Q. Huang, X. M. Ren, H. Huang, S. X. Xie, Q. Wang, and S. W. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702(2009).
    [CrossRef]
  21. Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001).
    [CrossRef]
  22. H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004).
    [CrossRef]
  23. S. Takeda and Y. Shigeoka, “An optical thin film Bessel filter for 40  Gbit/sec–100  GHz spacing D-WDM system,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, 8–12September2002.
  24. N. J. C. Libatique and Ravinder K. Jain, “A broadly tunable wavelength-selectable WDM source using a fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 13, 1283–1285(2001).
    [CrossRef]
  25. W. Wang, Y. Q. Huang, X. F. Duan, Q. Yan, X. M. Ren, Q. Wang, J. W. Guo, S. W. Cai, and H. Huang, “Influence of substrate on transmission performance of epitaxially grown Fabry–Pérot filter,” Chin. Opt. Lett. 9, 111301 (2011).
    [CrossRef]

2012 (2)

Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012).
[CrossRef]

Y. F. Zhou, Y. Q. Huang, X. F. Duan, X. Y. Fan, and X. M. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

2011 (2)

X. F. Duan, Y. Q. Huang, X. M. Ren, Q. Wang, and S. W. Cai, “Long wavelength multiple resonant cavities RCE photodetectors on GaAs substrates,” IEEE Trans. Electron Devices 58, 3948–3953 (2011).
[CrossRef]

W. Wang, Y. Q. Huang, X. F. Duan, Q. Yan, X. M. Ren, Q. Wang, J. W. Guo, S. W. Cai, and H. Huang, “Influence of substrate on transmission performance of epitaxially grown Fabry–Pérot filter,” Chin. Opt. Lett. 9, 111301 (2011).
[CrossRef]

2010 (4)

2009 (2)

2008 (1)

2007 (3)

R. Zhang and R. R. Mansour, “Low-cost dielectric-resonator filters with improved spurious performance,” IEEE Trans. Microwave Theor. Tech. 55, 2168–2175 (2007).
[CrossRef]

J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, “Thin-film III–V photodetectors integrated on silicon-on-insulator photonics ICs,” J. Lightwave Technol. 25, 1053–1060 (2007).
[CrossRef]

2005 (2)

G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13, 10102–10108 (2005).
[CrossRef]

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

2004 (1)

H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004).
[CrossRef]

2002 (3)

R. Slavik and S. LaroRhelle, “Large-band periodic filters for DWDM using multiple-superimposing fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1704–1706(2002).
[CrossRef]

L. R. Chen, “Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).
[CrossRef]

E. Atanassova and D. Spasov, “Thermal Ta2O5 alternative to SiO2 for storage capacitor application,” Microelectron. Reliab. 42, 1171–1177 (2002).
[CrossRef]

2001 (3)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001).
[CrossRef]

N. J. C. Libatique and Ravinder K. Jain, “A broadly tunable wavelength-selectable WDM source using a fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 13, 1283–1285(2001).
[CrossRef]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Atanassova, E.

E. Atanassova and D. Spasov, “Thermal Ta2O5 alternative to SiO2 for storage capacitor application,” Microelectron. Reliab. 42, 1171–1177 (2002).
[CrossRef]

Baets, R.

J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007).
[CrossRef]

G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13, 10102–10108 (2005).
[CrossRef]

Bogaerts, W.

Brouckaert, J.

Cai, S. W.

Chen, L. R.

L. R. Chen, “Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).
[CrossRef]

Chen, Q.

Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012).
[CrossRef]

Cheng, B. W.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Chitnis, D.

Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012).
[CrossRef]

Duan, X. F.

Dumon, P.

Edura, T.

Fan, X. Y.

Y. F. Zhou, Y. Q. Huang, X. F. Duan, X. Y. Fan, and X. M. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Guo, J. W.

He, S.

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Honda, S.

Huang, H.

Huang, Y.

H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004).
[CrossRef]

Huang, Y. Q.

Iga, R.

Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001).
[CrossRef]

Jain, Ravinder K.

N. J. C. Libatique and Ravinder K. Jain, “A broadly tunable wavelength-selectable WDM source using a fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 13, 1283–1285(2001).
[CrossRef]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Jian, S. S.

Kim, D. H.

D. H. Kim, H. J. Song, and C. H. Roh, “Improved spectral response of an InAs QD RC-SACM-APD with Ta2O5/SiO2 DBRs,” in The 7th International Conference on Nanotechnology (IEEE, 2007), pp. 681–685.

Kimerling, C.

J. Michel, J. Liu, and C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4, 527–534 (2010).
[CrossRef]

LaroRhelle, S.

R. Slavik and S. LaroRhelle, “Large-band periodic filters for DWDM using multiple-superimposing fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1704–1706(2002).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Libatique, N. J. C.

N. J. C. Libatique and Ravinder K. Jain, “A broadly tunable wavelength-selectable WDM source using a fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 13, 1283–1285(2001).
[CrossRef]

Liu, J.

J. Michel, J. Liu, and C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4, 527–534 (2010).
[CrossRef]

Liu, L.

Liu, Y.

Mansour, R. R.

R. Zhang and R. R. Mansour, “Low-cost dielectric-resonator filters with improved spurious performance,” IEEE Trans. Microwave Theor. Tech. 55, 2168–2175 (2007).
[CrossRef]

Mao, R. W.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Matsui, J.

Michel, J.

J. Michel, J. Liu, and C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4, 527–534 (2010).
[CrossRef]

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Ohiso, Y.

Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001).
[CrossRef]

Okamoto, H.

Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001).
[CrossRef]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Ren, W. H.

Ren, X.

H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004).
[CrossRef]

Ren, X. M.

Roelkens, G.

J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007).
[CrossRef]

G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13, 10102–10108 (2005).
[CrossRef]

Roh, C. H.

D. H. Kim, H. J. Song, and C. H. Roh, “Improved spectral response of an InAs QD RC-SACM-APD with Ta2O5/SiO2 DBRs,” in The 7th International Conference on Nanotechnology (IEEE, 2007), pp. 681–685.

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Sheng, Z.

Shi, W. H.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Shi, X.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Shigeoka, Y.

S. Takeda and Y. Shigeoka, “An optical thin film Bessel filter for 40  Gbit/sec–100  GHz spacing D-WDM system,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, 8–12September2002.

Slavik, R.

R. Slavik and S. LaroRhelle, “Large-band periodic filters for DWDM using multiple-superimposing fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1704–1706(2002).
[CrossRef]

Soh, Y. C.

Song, H. J.

D. H. Kim, H. J. Song, and C. H. Roh, “Improved spectral response of an InAs QD RC-SACM-APD with Ta2O5/SiO2 DBRs,” in The 7th International Conference on Nanotechnology (IEEE, 2007), pp. 681–685.

Spasov, D.

E. Atanassova and D. Spasov, “Thermal Ta2O5 alternative to SiO2 for storage capacitor application,” Microelectron. Reliab. 42, 1171–1177 (2002).
[CrossRef]

Taillaert, D.

Takeda, S.

S. Takeda and Y. Shigeoka, “An optical thin film Bessel filter for 40  Gbit/sec–100  GHz spacing D-WDM system,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, 8–12September2002.

Tan, Z. W.

Tao, P. L.

Thourhout, D. V.

Tokuda, M.

Tsutsui, K.

Utaka, K.

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Wada, Y.

Walls, K.

Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012).
[CrossRef]

Wang, Q.

Wang, Q. J.

Wang, Q. M.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Wang, W.

Wang, X.

H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004).
[CrossRef]

Wu, Z. G.

Xie, S. X.

Yan, Q.

Yu, J. J.

J. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100 G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

Yu, J. Z.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Zhang, R.

R. Zhang and R. R. Mansour, “Low-cost dielectric-resonator filters with improved spurious performance,” IEEE Trans. Microwave Theor. Tech. 55, 2168–2175 (2007).
[CrossRef]

Zhang, Y.

Zhao, L.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Zheng, Y. Y.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Zhou, X.

J. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100 G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

Zhou, Y. F.

Y. F. Zhou, Y. Q. Huang, X. F. Duan, X. Y. Fan, and X. M. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

Zuo, Y. H.

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Chin. Opt. Lett. (2)

Electron. Lett. (1)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

J. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100 G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004).
[CrossRef]

N. J. C. Libatique and Ravinder K. Jain, “A broadly tunable wavelength-selectable WDM source using a fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 13, 1283–1285(2001).
[CrossRef]

J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007).
[CrossRef]

R. Slavik and S. LaroRhelle, “Large-band periodic filters for DWDM using multiple-superimposing fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1704–1706(2002).
[CrossRef]

Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005).
[CrossRef]

Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012).
[CrossRef]

IEEE Trans. Electron Devices (1)

X. F. Duan, Y. Q. Huang, X. M. Ren, Q. Wang, and S. W. Cai, “Long wavelength multiple resonant cavities RCE photodetectors on GaAs substrates,” IEEE Trans. Electron Devices 58, 3948–3953 (2011).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

R. Zhang and R. R. Mansour, “Low-cost dielectric-resonator filters with improved spurious performance,” IEEE Trans. Microwave Theor. Tech. 55, 2168–2175 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Microelectron. Reliab. (1)

E. Atanassova and D. Spasov, “Thermal Ta2O5 alternative to SiO2 for storage capacitor application,” Microelectron. Reliab. 42, 1171–1177 (2002).
[CrossRef]

Nat. Photon. (1)

J. Michel, J. Liu, and C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4, 527–534 (2010).
[CrossRef]

Opt. Commun. (1)

L. R. Chen, “Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

Y. F. Zhou, Y. Q. Huang, X. F. Duan, X. Y. Fan, and X. M. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012).
[CrossRef]

Other (2)

D. H. Kim, H. J. Song, and C. H. Roh, “Improved spectral response of an InAs QD RC-SACM-APD with Ta2O5/SiO2 DBRs,” in The 7th International Conference on Nanotechnology (IEEE, 2007), pp. 681–685.

S. Takeda and Y. Shigeoka, “An optical thin film Bessel filter for 40  Gbit/sec–100  GHz spacing D-WDM system,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, 8–12September2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic structure of the photodetector with multicavity filter.

Fig. 2.
Fig. 2.

Schematic structure of the multicavity filter.

Fig. 3.
Fig. 3.

Quantum efficiency of the photodetector with multicavity filter.

Fig. 4.
Fig. 4.

(a) Optical micrograph of the fabricated photodetector in which the photosensitive area of Φ15μm, and (b) photosensitive area of Φ40μm are exhibited here.

Fig. 5.
Fig. 5.

(a) Measured quantum efficiencies of the p-i-n photodetector with and without the bonded Si-based F–P filter, and (b) the response spectrum of the hybrid integrated photodetector.

Fig. 6.
Fig. 6.

Measured frequency response of the photodetectors in which photosensitive area of Φ15μm (dot curve) and photosensitive area of Φ40μm (solid curve) are exhibited here.

Tables (1)

Tables Icon

Table 1. Values of Parameters for the Structure Presented in Fig.1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ux=(exp(i2πnxlx/λ)00exp(i2πnxlx/λ)),
SLH=12(1+nH/nL1nH/nL1nH/nL1+nH/nL),SHL=12(1+nL/nH1nL/nH1nL/nH1+nL/nH).
Sb=UHSHLULSLH,Sc=UHSHL,Sc=SLHUHSHL,Sd=ULSLHUHSHL.
SFilter=12(1+1/nH11/nH11/nH1+1/nH)Sbk1Sc(exp(i2πnLlf1/λ)00exp(i2πnLlf1/λ))ScSdk2(exp(i2πnLlf2/λ)00exp(i2πnLlf2/λ))ScSdk3(exp(i2πnLlf3/λ)00exp(i2πnLlf3/λ))ScSdk4(exp(i2πnLlf4/λ)00exp(i2πnLlf4/λ))ScSdk5(exp(i2πnLlf5/λ)00exp(i2πnLlf5/λ))SLHSbk612(1+nH1nH1nH1+nH)=(SF11SF12SF21SF22),
(Ei+Ei)=(SF11SF12SF21SF22)(E0+E0),
S=SFilter·SBCB·SInP·SInPncontact·SInGaAs·SInPspacer=(S11S12S21S22)
S=SFilter·SBCB·SInP·SInPncontact·SInGaAsetch·SInPspacer·SInGaAsactive·SInPspacer·SInGaAsPcontact=(S11S12S21S22),
η=1|S|2·na·[|S22S12·S21S11|2(1eαl)+|S11·S21S11S21|2(eαl1)].

Metrics