Abstract

We theoretically demonstrate that nonlinear optical response in a thin silicon waveguide within a wide wavelength regime can be enhanced by a metal grating. Numerical simulation indicates that the enhancement factor of the four-wave mixing signal varies with the position. The largest enhancement factor of the four-wave mixing is more than 104 at a certain position in the IR spectrum with proper geometric parameters. More importantly, the wavelength of four-wave mixing with the same enhancement factor can be controlled dynamically within a wide wavelength regime.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  3. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
    [CrossRef]
  4. Q. Li and M. Qiu, “Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide,” Opt. Express 18, 15531–15543 (2010).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
    [CrossRef]
  7. W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
    [CrossRef]
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef]
  9. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef]
  10. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
    [CrossRef]
  11. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [CrossRef]
  12. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
    [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef]
  14. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
    [CrossRef]
  15. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef]
  16. M. Danckwerts, and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [CrossRef]
  17. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
    [CrossRef]
  18. J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
    [CrossRef]
  19. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
    [CrossRef]
  20. J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
    [CrossRef]
  21. A. P. Hibbins and J. R. Sambles, “Squeezing millimeterwaves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
    [CrossRef]
  22. P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
    [CrossRef]
  23. E. Giorgetti, P. Lambkin, Q. Li, L. Palchetti, S. Sottini, D. Grando, and W. Blau, “Phase-matched gratings for enhanced forward degenerate four-wave mixing,” J. Opt. Soc. Am. B 12, 58–66 (1995).
    [CrossRef]
  24. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  26. S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975).
    [CrossRef]
  27. L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
    [CrossRef]
  28. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
    [CrossRef]
  29. W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011).
    [CrossRef]
  30. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef]
  31. R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009).
    [CrossRef]
  32. C. Min, and G. Veronis, “Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides,” Opt. Express 18, 20939–20948 (2010).
    [CrossRef]
  33. F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).
    [CrossRef]
  34. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988).
    [CrossRef]

2011

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011).
[CrossRef]

2010

C. Min, and G. Veronis, “Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides,” Opt. Express 18, 20939–20948 (2010).
[CrossRef]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Q. Li and M. Qiu, “Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide,” Opt. Express 18, 15531–15543 (2010).
[CrossRef]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
[CrossRef]

2009

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[CrossRef]

R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009).
[CrossRef]

2008

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

2007

M. Danckwerts, and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

2005

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef]

2004

A. P. Hibbins and J. R. Sambles, “Squeezing millimeterwaves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef]

2003

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

2000

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1995

E. Giorgetti, P. Lambkin, Q. Li, L. Palchetti, S. Sottini, D. Grando, and W. Blau, “Phase-matched gratings for enhanced forward degenerate four-wave mixing,” J. Opt. Soc. Am. B 12, 58–66 (1995).
[CrossRef]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).
[CrossRef]

1988

E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988).
[CrossRef]

1975

S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Bai, Q.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Bertoni, H.

S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Blanchard, R.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Blau, W.

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Branunisch, H.

R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009).
[CrossRef]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Broschat, S. L.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).
[CrossRef]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

Capasso, F.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Chen, J.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Cheng, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Christodoulides, D. N.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clemens, B. M.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

Colombelli, R.

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[CrossRef]

M. Danckwerts, and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Ding, R.

R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef]

Gatzogiannis, E.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Genevet, P.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Giorgetti, E.

Grando, D.

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Hastings, F. D.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins and J. R. Sambles, “Squeezing millimeterwaves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jouy, P.

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

Kang, M.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Kats, M. A.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Kerman, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kivshar, Y. S.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Lambkin, P.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Li, Q.

Lippitz, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef]

Liu, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Liu, W.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Liu, W. F.

W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011).
[CrossRef]

Liu, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Ma, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Min, C.

Miroshnichenko, A. E.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Neshev, D. N.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Novotny, L.

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[CrossRef]

M. Danckwerts, and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Oh, J. I.

W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011).
[CrossRef]

Orrit, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef]

Palchetti, L.

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[CrossRef]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Park, J.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Peng, S. T.

S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef]

Qiu, M.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Q. Li and M. Qiu, “Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide,” Opt. Express 18, 15531–15543 (2010).
[CrossRef]

Quidant, R.

Quindant, R.

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

Renger, J.

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

Sagnes, I.

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

Salandrino, A.

Sambles, J. R.

A. P. Hibbins and J. R. Sambles, “Squeezing millimeterwaves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef]

Schneider, J. B.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).
[CrossRef]

Schuller, J. A.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

Schuller, Jon A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

Scully, M. O.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Shadrivov, I. V.

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

Shen, W Z

W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011).
[CrossRef]

Sirtori, C.

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

Song, Y.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Sottini, S.

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).

Tamir, T.

S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975).
[CrossRef]

Tetienne, J. P.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Thorsos, E. I.

E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988).
[CrossRef]

Tian, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Todorov, Y.

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

Tong, L.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Tsang, L.

R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009).
[CrossRef]

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef]

Van Hulst, N.

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

Vasanelli, A.

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

Veronis, G.

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Wang, H. T.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Yang, Q.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Zha, C.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef]

Appl. Phys. Lett.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011).
[CrossRef]

IEEE Trans. Antennas Propag.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009).
[CrossRef]

S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975).
[CrossRef]

J. Acoust. Soc. Am.

E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988).
[CrossRef]

J. Appl. Phys.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010).
[CrossRef]

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Nanotechnology

W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011).
[CrossRef]

Nat. Mater.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

A. P. Hibbins and J. R. Sambles, “Squeezing millimeterwaves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

M. Danckwerts, and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

Other

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Structure cross section together with the geometrical parameters; (b) field intensity divided by the incident intensity versus incident wavelength (top blue, middle green, and bottom red curves for gold, Si, and SiO2 gratings, respectively) for period of gratings d=1000nm; (c) field intensity divided by the incident intensity versus incident wavelength and grating period, (d), (e) field distribution at wavelength λA (d) and λB (e) for d=1000nm. (l=100nm, t=50nm, h=100nm).

Fig. 2.
Fig. 2.

Relationship between the enhancement factor of 4WM and the position of the monitor; inset is the schematic of the position of the monitor marked by a yellow cross. S is the horizontal displacement of monitor with the center position between two metal strips, H is the position of monitor under the silicon waveguide below the air–Si interface, which is a variable between 0 and 90 nm. (a) H=30nm, S varies from 0.5 to 0.5 μm; (b) S=0, H varies from 0 to 90 nm (l=100nm, t=50nm, h=100nm, d=1000nm).

Fig. 3.
Fig. 3.

4WM field intensity versus 4WM wavelength (l=100nm, t=50nm, d=1000nm, h=100nm).

Fig. 4.
Fig. 4.

Simulated local enhancement factor (a) ηin,A4 at λA=1487nm; (b) ηin,B2 at λB=1592nm, and (c) ηout,4WM2 at λ4WM=1712nm and (d) 4WM signal enhancement, as a function of width of metal grating (t=50nm, d=1000nm, h=100nm).

Fig. 5.
Fig. 5.

(a) Schematic of the simulation configuration employed to calculate the local enhancement factor of the 4WM signal for a rough metal–Si interface; (b) simulation of the local enhancement factor of the 4WM signal as a function of the roughness rms height (σ) for correlation length Lc=1nm and δ=0.1nm (l=200nm, t=50nm, d=1000nm, h=100nm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(EF)l=ηin,A4ηin,B2ηout,4WM2,
R(δ)=f(x)f(x+δ),
R(δ)=σ2exp(δ2/Lc2),

Metrics