Abstract

First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60–80 arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack–Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Rimmele and J. Marino, “Solar adaptive optics,” Living Rev. Solar Phys. 8, 2 (2011).
  2. R. Ragazzoni, “Adaptive optics for giant telescopes: NGS vs. LGS,” in Proceedings of the Backaskog Workshop on Extremely Large Telescopes, T. Andersen, A. Ardeberg, and R. Gilmozzi, eds. (Lund Observatory and European Southern Observatory, 2000), pp. 175–180.
  3. R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100 m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000).
    [CrossRef]
  4. C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
    [CrossRef]
  5. O. von der Lühe, T. Berkefeld, and D. Soltau, “Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife,” C. R. Phys. 6, 1139–1147 (2005).
    [CrossRef]
  6. T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
    [CrossRef]
  7. T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
    [CrossRef]
  8. B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
    [CrossRef]
  9. F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
    [CrossRef]
  10. F. Rigaut, B. Ellerbroeck, and R. Flicker, “Principles, limitation and performance of multi-conjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000).
    [CrossRef]
  11. R. B. Dunn, “High resolution: a retrospective,” in High Resolution Solar Physics: Theory, Observations and Techniques, Vol. 183 of ASP Conference Series, T. R. Rimmele, K. S. Balasubramaniam, and R. R. Radick, eds. (Astronomical Society of the Pacific, 1999).
  12. E. Ribak, “Separation of atmospheric layers,” Proc. SPIE 5382, 569–573 (2004).
    [CrossRef]
  13. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Vol. 19 of Progress in Optics, E. Wolf, ed. (North-Holland, 1981), pp. 281–376.
  14. A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
    [CrossRef]
  15. N. Seghouani, and A. Irbah, “Estimation of the spatial coherence outer scale for daytime observations,” in IAU Site 2000, Vol. 266 of ASP Conference Series, J. Vernin, Z. Benkhaldoun, and C. Muñoz-Tuñón (Astronomical Society of the Pacific, 2002), pp. 36–43.
  16. Y. Sun, A. Consortini, and Z. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17, 1–8 (2007).
    [CrossRef]
  17. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225(1988).
    [CrossRef]
  18. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  19. M. Séchaud, “Wave-front compensation devices,” Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge, 1999), pp. 57–90.
  20. E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001).
    [CrossRef]
  21. T. Berkefeld, D. Soltau, D. Schmidt, and O. von der Lühe, “Adaptive optics development at the German solar telescopes,” Appl. Opt. 49, G155–G166 (2010).
    [CrossRef]
  22. A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
    [CrossRef]

2012 (1)

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

2011 (1)

T. Rimmele and J. Marino, “Solar adaptive optics,” Living Rev. Solar Phys. 8, 2 (2011).

2010 (6)

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
[CrossRef]

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
[CrossRef]

T. Berkefeld, D. Soltau, D. Schmidt, and O. von der Lühe, “Adaptive optics development at the German solar telescopes,” Appl. Opt. 49, G155–G166 (2010).
[CrossRef]

2007 (1)

Y. Sun, A. Consortini, and Z. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17, 1–8 (2007).
[CrossRef]

2005 (1)

O. von der Lühe, T. Berkefeld, and D. Soltau, “Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife,” C. R. Phys. 6, 1139–1147 (2005).
[CrossRef]

2004 (2)

E. Ribak, “Separation of atmospheric layers,” Proc. SPIE 5382, 569–573 (2004).
[CrossRef]

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

2001 (1)

E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001).
[CrossRef]

2000 (2)

R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100 m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000).
[CrossRef]

F. Rigaut, B. Ellerbroeck, and R. Flicker, “Principles, limitation and performance of multi-conjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000).
[CrossRef]

1988 (1)

1976 (1)

Abahamid, A.

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

Agabi, A.

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

Arcidiacono, C.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

Azouit, M.

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

Bec, M.

F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
[CrossRef]

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Benkhaldoun, Z.

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

Berkefeld, T.

T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
[CrossRef]

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

T. Berkefeld, D. Soltau, D. Schmidt, and O. von der Lühe, “Adaptive optics development at the German solar telescopes,” Appl. Opt. 49, G155–G166 (2010).
[CrossRef]

O. von der Lühe, T. Berkefeld, and D. Soltau, “Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife,” C. R. Phys. 6, 1139–1147 (2005).
[CrossRef]

Boccas, M.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Cao, W.

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

Consortini, A.

Y. Sun, A. Consortini, and Z. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17, 1–8 (2007).
[CrossRef]

D’Orgeville, C.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Daruich, F.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Diolaiti, E.

E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001).
[CrossRef]

Dunn, R. B.

R. B. Dunn, “High resolution: a retrospective,” in High Resolution Solar Physics: Theory, Observations and Techniques, Vol. 183 of ASP Conference Series, T. R. Rimmele, K. S. Balasubramaniam, and R. R. Radick, eds. (Astronomical Society of the Pacific, 1999).

Ellerbroeck, B.

F. Rigaut, B. Ellerbroeck, and R. Flicker, “Principles, limitation and performance of multi-conjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000).
[CrossRef]

Falomo, R.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

Farinato, J.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100 m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000).
[CrossRef]

Fesquet, V.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Flicker, R.

F. Rigaut, B. Ellerbroeck, and R. Flicker, “Principles, limitation and performance of multi-conjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000).
[CrossRef]

Galvez, R.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Garcia-Rissmann, A.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
[CrossRef]

Gausachs, G.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Goode, P.

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

Gorceix, N.

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

Gullieuszik, M.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

Hegwer, S.

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

Irbah, A.

N. Seghouani, and A. Irbah, “Estimation of the spatial coherence outer scale for daytime observations,” in IAU Site 2000, Vol. 266 of ASP Conference Series, J. Vernin, Z. Benkhaldoun, and C. Muñoz-Tuñón (Astronomical Society of the Pacific, 2002), pp. 36–43.

Jabiri, A.

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

Kellerer, A.

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

Li, Z.

Y. Sun, A. Consortini, and Z. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17, 1–8 (2007).
[CrossRef]

Löfdahl, M.

T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
[CrossRef]

Lombini, M.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Marchetti, E.

R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100 m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000).
[CrossRef]

Marino, J.

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

T. Rimmele and J. Marino, “Solar adaptive optics,” Living Rev. Solar Phys. 8, 2 (2011).

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

Moretti, A.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

Moro, D.

T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
[CrossRef]

Neichel, B.

F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
[CrossRef]

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Noll, R.

Perez, G.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Piotto, G.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

Ragazzoni, R.

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001).
[CrossRef]

R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100 m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000).
[CrossRef]

R. Ragazzoni, “Adaptive optics for giant telescopes: NGS vs. LGS,” in Proceedings of the Backaskog Workshop on Extremely Large Telescopes, T. Andersen, A. Ardeberg, and R. Gilmozzi, eds. (Lund Observatory and European Southern Observatory, 2000), pp. 175–180.

Ribak, E.

E. Ribak, “Separation of atmospheric layers,” Proc. SPIE 5382, 569–573 (2004).
[CrossRef]

Richards, K.

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

Rigaut, F.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
[CrossRef]

F. Rigaut, B. Ellerbroeck, and R. Flicker, “Principles, limitation and performance of multi-conjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000).
[CrossRef]

Rimmele, T.

T. Rimmele and J. Marino, “Solar adaptive optics,” Living Rev. Solar Phys. 8, 2 (2011).

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

Roddier, F.

F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225(1988).
[CrossRef]

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Vol. 19 of Progress in Optics, E. Wolf, ed. (North-Holland, 1981), pp. 281–376.

Schmidt, D.

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

T. Berkefeld, D. Soltau, D. Schmidt, and O. von der Lühe, “Adaptive optics development at the German solar telescopes,” Appl. Opt. 49, G155–G166 (2010).
[CrossRef]

Séchaud, M.

M. Séchaud, “Wave-front compensation devices,” Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge, 1999), pp. 57–90.

Seghouani, N.

N. Seghouani, and A. Irbah, “Estimation of the spatial coherence outer scale for daytime observations,” in IAU Site 2000, Vol. 266 of ASP Conference Series, J. Vernin, Z. Benkhaldoun, and C. Muñoz-Tuñón (Astronomical Society of the Pacific, 2002), pp. 36–43.

Soltau, D.

T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
[CrossRef]

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

T. Berkefeld, D. Soltau, D. Schmidt, and O. von der Lühe, “Adaptive optics development at the German solar telescopes,” Appl. Opt. 49, G155–G166 (2010).
[CrossRef]

O. von der Lühe, T. Berkefeld, and D. Soltau, “Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife,” C. R. Phys. 6, 1139–1147 (2005).
[CrossRef]

Sun, Y.

Y. Sun, A. Consortini, and Z. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17, 1–8 (2007).
[CrossRef]

Tordi, M.

E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001).
[CrossRef]

Trancho, G.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Upadhya, V.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Vernin, J.

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

von der Lühe, O.

T. Berkefeld, D. Soltau, D. Schmidt, and O. von der Lühe, “Adaptive optics development at the German solar telescopes,” Appl. Opt. 49, G155–G166 (2010).
[CrossRef]

O. von der Lühe, T. Berkefeld, and D. Soltau, “Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife,” C. R. Phys. 6, 1139–1147 (2005).
[CrossRef]

Vucina, T.

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

Waldmann, T.

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

Woeger, F.

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

Appl. Opt. (2)

Astron. Astrophys. (3)

A. Kellerer, N. Gorceix, J. Marino, W. Cao, and P. Goode, “Profiles of the daytime atmospheric turbulence above Big Bear Lake observatory,” Astron. Astrophys. 542, A2–A11 (2012).
[CrossRef]

E. Diolaiti, R. Ragazzoni, and M. Tordi, “Closed loop performance of a layer-oriented multi-conjugate adaptive optics system,” Astron. Astrophys. 372, 710–718 (2001).
[CrossRef]

A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004).
[CrossRef]

C. R. Phys. (1)

O. von der Lühe, T. Berkefeld, and D. Soltau, “Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife,” C. R. Phys. 6, 1139–1147 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Living Rev. Solar Phys. (1)

T. Rimmele and J. Marino, “Solar adaptive optics,” Living Rev. Solar Phys. 8, 2 (2011).

Proc. SPIE (8)

R. Ragazzoni, J. Farinato, and E. Marchetti, “Adaptive optics for 100 m class telescopes: new challenges require new solutions,” Proc. SPIE 4007, 1076–1087 (2000).
[CrossRef]

C. Arcidiacono, M. Lombini, A. Moretti, R. Ragazzoni, J. Farinato, R. Falomo, M. Gullieuszik, and G. Piotto, “An update of the on-sky performance of the layer-oriented wave-front sensor for MAD,” Proc. SPIE 7736, 77363D (2010).
[CrossRef]

T. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld, D. Soltau, D. Schmidt, and T. Waldmann, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope,” Proc. SPIE 7736, 773631 (2010).
[CrossRef]

T. Berkefeld, D. Soltau, D. Moro, and M. Löfdahl, “Wavefront sensing and wavefront reconstruction for the 4 m European solar telescope EST,” Proc. SPIE 7736, 77362J (2010).
[CrossRef]

B. Neichel, F. Rigaut, M. Bec, M. Boccas, F. Daruich, C. D’Orgeville, V. Fesquet, R. Galvez, A. Garcia-Rissmann, G. Gausachs, M. Lombini, G. Perez, G. Trancho, V. Upadhya, and T. Vucina, “The Gemini MCAO System GeMS: nearing the end of a lab-story,” Proc. SPIE 7736, 773606 (2010).
[CrossRef]

F. Rigaut, B. Neichel, M. Bec, and A. Garcia-Rissmann, “MYST: a comprehensive high-level AO control tool for GeMS,” Proc. SPIE 7736, 77362H (2010).
[CrossRef]

F. Rigaut, B. Ellerbroeck, and R. Flicker, “Principles, limitation and performance of multi-conjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000).
[CrossRef]

E. Ribak, “Separation of atmospheric layers,” Proc. SPIE 5382, 569–573 (2004).
[CrossRef]

Waves Random Complex Media (1)

Y. Sun, A. Consortini, and Z. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17, 1–8 (2007).
[CrossRef]

Other (5)

M. Séchaud, “Wave-front compensation devices,” Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge, 1999), pp. 57–90.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Vol. 19 of Progress in Optics, E. Wolf, ed. (North-Holland, 1981), pp. 281–376.

N. Seghouani, and A. Irbah, “Estimation of the spatial coherence outer scale for daytime observations,” in IAU Site 2000, Vol. 266 of ASP Conference Series, J. Vernin, Z. Benkhaldoun, and C. Muñoz-Tuñón (Astronomical Society of the Pacific, 2002), pp. 36–43.

R. B. Dunn, “High resolution: a retrospective,” in High Resolution Solar Physics: Theory, Observations and Techniques, Vol. 183 of ASP Conference Series, T. R. Rimmele, K. S. Balasubramaniam, and R. R. Radick, eds. (Astronomical Society of the Pacific, 1999).

R. Ragazzoni, “Adaptive optics for giant telescopes: NGS vs. LGS,” in Proceedings of the Backaskog Workshop on Extremely Large Telescopes, T. Andersen, A. Ardeberg, and R. Gilmozzi, eds. (Lund Observatory and European Southern Observatory, 2000), pp. 175–180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Problem of the star-oriented approach. Outside the blue, M-shaped area, there are no redundant measurements. Turbulence in the two purple squares, for example, yields the same sensor measurement and cannot be distinguished. The solution consists in applying a correction that will, on average, be more right than wrong: the control loop is informed about the Kolmogorov nature of turbulence and about the current profile of atmospheric turbulence. DM, deformable mirror.

Fig. 2.
Fig. 2.

Principle of the layer-oriented approach: the wavefront distortions are introduced at an altitude where the wavefronts from five stars are disposed as shown in the left panel. If the sensor is conjugated to an altitude where the wavefronts are disposed as shown in the right panel, the distortions are smoothed out and the sensor signal is attenuated.

Fig. 3.
Fig. 3.

Principle of the layer-oriented approach for solar observations: the MCAO system consists of independent AO loops. Each loop contains a sensor and a mirror conjugated to a dominant turbulent layer. The SH sensors measure the average wavefront distortions inside the entire field of view. The process of averaging attenuates signal from distant layers.

Fig. 4.
Fig. 4.

Design example for a 2 m telescope with 80 m focal length and 100arcsec field of view. A layer at 20 km altitude with a Fried parameter r0=0.4m is imaged onto the SH array. The resulting parameter values for the lenslet array and the detector are indicated in the text.

Fig. 5.
Fig. 5.

Cross section through part of a wavefront averaged over disks of different diameter, d. The unit of length is taken to be the Fried parameter. The length of the segment is 40; the points are plotted a unit distance apart. The averaged values depend on the phases within a distance up to d/2 from the line segment.

Fig. 6.
Fig. 6.

Variance of the mean wavefront phase over circles of diameter D and d [see Eq. (5)]. For a small outer scale, L0, the attenuation of the signal from distant layers is more efficient.

Fig. 7.
Fig. 7.

Relative contribution of each layer to phase, slope, and curvature measurements. The curves are calculated in terms of Eqs. (5)–(7) with an outer scale L0=10m. The contribution of a distant layer (Dd) is smallest for curvature measurements.

Fig. 8.
Fig. 8.

Minimum altitude difference between the layer and the sensor for the variance of the signal to fall below the fitting error. The x axis indicates the angular diameter of the circular field of view. The results are derived from Fig. 6.

Fig. 9.
Fig. 9.

Number of subapertures required in the layer- and star-oriented approaches (blue and black, respectively). Full black line, the metapupil of the highest deformable mirror is entirely sensed; dashed black line, as many subapertures as actuators, circles, number of subapertures for the MCAO systems on NST, GREGOR, and EST. The characteristics of these systems are listed, with references, in Table 2.

Fig. 10.
Fig. 10.

Black lines, number of sensing directions required in the star-oriented approach; solid line, the metapupil of the highest deformable mirror is entirely sensed; dashed line, as many subapertures as actuators; circles, number of sensing directions for the MCAO systems on NST, GREGOR, and EST; blue line, number of sensors required in the layer-oriented approach. The characteristics of these systems are listed, with references, in Table 2.

Tables (2)

Tables Icon

Table 1. Qualitative Comparison of the Star- and Layer-Oriented Approaches for Solar MCAO Systemsa

Tables Icon

Table 2. Parameter Values of Three Planned MCAO Systems: NST in California and GREGOR and EST on Canary Islandsa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

di,k=α|hihk|.
σ2(d)θ=02πν=0+WF(ν⃗)Gd(ν⃗)dννdθ,
WF(ν⃗)(ν2+1L02)11/6,
Gd(ν⃗)(J1(πνd)πνd)2.
σ2(d)ν=0+ν(ν2+1L02)11/6(J1(πνd)πνd)2dν.
σsl2(d)ν=0+dν·ν3(ν2+1L02)11/6(J1(πνd)πνd)2,
σcv2(d)ν=0+dν·ν5(ν2+1L02)11/6(J1(πνd)πνd)2.
σ2=1.03(dr0)5/3.
σr2=μ(dr0)5/3,
Fi(x,y)=l=1Lfi,l.
σi2=l=1Lglσi,l2.
NS=l=1L((D+hlα)fl3/5/r0)2.
NS=(Dr0)2+(S1)(DrH)2l=1L((D+hlα)fl3/5r0)2Sl=1L(1+hlα/D)2fl6/51l=2Lfl6/5+1.
SD2(D+hLα)2,S(1+hLα/D)2.

Metrics