Abstract

We present a procedure to generate slow light with a large group index, wideband, and low dispersion in our suggested photonic crystal waveguide. By modulation of the declinations in the first two rows of air holes, the group index, the bandwidth, and the dispersion can be tuned effectively. Utilizing the two-dimensional plane wave expansion method (PWE) and the finite-difference time-domain method (FDTD), we demonstrate slow light with the group indices of 23, 35, and 45, respectively, while restricting the group-index variation within a 10% range. We accordingly attain an available bandwidth of 40.7, 23.7, and 5.1 nm, respectively. Meanwhile, the normalized delay–bandwidth product stays around 0.45, with minimal dispersion less than 0.2(ps2/m) for all the cases.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef]
  2. R. Won, “Slow light now and then,” Nature 2, 454–455 (2008).
  3. T. F. Krauss, “Why do we need slow light?,” Nature 2, 448–450 (2008).
    [CrossRef]
  4. T. Baba, “Slow light in photonic crystals,” Nature 2, 465–473 (2008).
    [CrossRef]
  5. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40, 2666–2670 (2007).
    [CrossRef]
  6. F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
    [CrossRef]
  7. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
    [CrossRef]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  10. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
    [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  12. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
    [CrossRef]
  13. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [CrossRef]
  14. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  15. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
    [CrossRef]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  17. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
    [CrossRef]
  18. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
    [CrossRef]
  19. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  20. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
    [CrossRef]
  21. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
    [CrossRef]
  22. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
    [CrossRef]
  23. J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
    [CrossRef]
  24. D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
    [CrossRef]
  25. J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
    [CrossRef]
  26. A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
    [CrossRef]
  27. G. P. Agarwal, Fiber-Optic Communication Systems (Wiley-Interscience, 1997).
  28. A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
    [CrossRef]
  29. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  30. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009).
    [CrossRef]
  31. U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
    [CrossRef]
  32. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11, 1175–1196 (2003).
    [CrossRef]

2011 (2)

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

2010 (3)

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

2009 (1)

2008 (5)

2007 (3)

2006 (3)

2005 (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

2004 (1)

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003 (4)

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11, 1175–1196 (2003).
[CrossRef]

2002 (1)

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

2001 (3)

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1995 (1)

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Adachi, J.

Adibi, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

Agarwal, G. P.

G. P. Agarwal, Fiber-Optic Communication Systems (Wiley-Interscience, 1997).

Ahopelto, J.

Asakawa, K.

Baba, T.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Benisty, H.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Bo, F.

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

Borel, P. I.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Cassan, E.

Chen, S.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Dulkeith, E.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Eich, M.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

Engeness, T. D.

Fage-Pedersen, J.

Fink, Y.

Forchel, A.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Frandsen, L. H.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gao, D.

Gao, F.

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gomez-Iglesias, A.

Green, W. M. J.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Han, J. W.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Han, X.

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Hao, R.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hou, S. L.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Ibanescu, M.

Ikeda, N.

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Jacobs, S.

Jafarpour, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Johnson, S. G.

Kamp, M.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Kawaaski, T.

Khanh, V. D.

Khayam, O.

Klopf, F.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Korterik, J. P.

Krauss, T. F.

Kuipers, L.

Lavrinenko, A. V.

Le Roux, X.

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Lee, R. K.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

Lei, J. L.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Li, J.

Li, Y. P.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Liang, J.

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Lipsanen, H.

Liu, Z.

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

Loncar, M.

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Marris-Morini, D.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Michaeli, A.

Mori, D.

Mulot, M.

Notomi, M.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

O’Faolain, L.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Peng, C.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

Petrov, A. Yu.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Reithmaier, J. P.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Ren, L.-Y.

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Salib, M.

Sasaki, H.

Säynätjoki, A.

Schares, L.

Scherer, A.

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

Schuller, C.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Settle, M. D.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Shinya, A.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Skorobogatiy, M.

Sugimoto, Y.

Takahashi, C.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Tamamura, T.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

van Hulst, N. F.

Vivien, L.

Vlasov, Y. A.

E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Wang, D. B.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Wang, X.-J.

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Wang, Z. Y.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Watanabe, Y.

Weisberg, O.

White, T. P.

Won, R.

R. Won, “Slow light now and then,” Nature 2, 454–455 (2008).

Wu, J.

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Xia, F. N.

Xu, J.

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

Xu, Y.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yariv, A.

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

Yokohama, I.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yuan, L. H.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Yun, M.-J.

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Zhang, G.

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

Zhang, J.

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Zhang, X.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[CrossRef]

J. Appl. Phys. (2)

J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40, 2666–2670 (2007).
[CrossRef]

Nature (6)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

R. Won, “Slow light now and then,” Nature 2, 454–455 (2008).

T. F. Krauss, “Why do we need slow light?,” Nature 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nature 2, 465–473 (2008).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Commun. (2)

J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Opt. Express (11)

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009).
[CrossRef]

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11, 1175–1196 (2003).
[CrossRef]

E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
[CrossRef]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[CrossRef]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[CrossRef]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

Opt. Quantum Electron. (1)

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002).
[CrossRef]

Phys. Rev. B (2)

A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001).
[CrossRef]

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Other (1)

G. P. Agarwal, Fiber-Optic Communication Systems (Wiley-Interscience, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed structure and (b) calculated dispersion curve of the standard PCW; Δθ1=0° and Δθ2=0°.

Fig. 2.
Fig. 2.

(a) Curves of the waveguide modes for different values of Δθ1 and (b) the curves of the group index for different values of Δθ1.

Fig. 3.
Fig. 3.

(a) Curves of the waveguide modes for different values of Δθ2 and (b) the curves of the group index for different values of Δθ2.

Fig. 4.
Fig. 4.

(a) Curves of the dispersion for the three examples of optimized PCWs; (b) the curves of the group index for the three examples of optimized PCWs.

Fig. 5.
Fig. 5.

Corresponding group index and GVD plotted as a function of wavelength λ for the three examples of optimized PCWs.

Fig. 6.
Fig. 6.

Dependence of the normalized delay bandwidth product NDBP on Δθ1 and Δθ2.

Fig. 7.
Fig. 7.

Electric-field distributions in the direction of the z axis (Ez) for the three examples of the optimized PCWs and the standard crescent-shaped PCW without shifting the declinations along the Brillouin zone. (a) Ez field distribution in a small wave vector region, such as k=0.390 (2π/a). (b) Ez field distribution in a large wave vector region, such as k=0.490 (2π/a).

Fig. 8.
Fig. 8.

(a) Group index as a function of wavelength λ for different deviations between air rod O1 and silicon rod O2 and (b) the GVD as a function of wavelength λ for different deviations between air rod O1 and silicon rod O2.

Tables (1)

Tables Icon

Table 1. Comparison between This Paper and Reference Papersa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

vg=dωdk=2πcadudk.
ng=cvg=a2πdkdu.
β2=d2kdω2=1cdngdω.
NDBPn˜g×Δωω.
n˜g=ω0ω0+Δωng(ω)×dω/Δω,
vg=dωdkΔκα2(ωω0)1/2α,
β2=d2kdω2α(ωω0)3/2.

Metrics