Abstract

Trace level detection of nitric oxide (NO) is of great interest for a wide range of applications such as environment and human health. For this purpose, a high sensitive sensor based photoacoustic spectroscopy (PAS) principle has been developed at our laboratory for detection of NO at very low concentration (ppbV). For optimization of the PAS signal and to achieve higher sensitivity, parametric dependence investigation was carried out where PAS signal dependence on NO gas pressure, cell geometry, buffer gas (Ar, N2, He), and laser pulse energy used three PAS cells developed locally. The best sensitivity achieved with three cells was 41, 11, 20 ppbv, respectively. It is worth reporting that the best PAS signal to noise ratio was achieved by using a cylindrical cell having three acoustic filters and argon as a buffer gas.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, “Air monitoring by spectroscopy techniques,” in Chemical Analysis (Wiley, 1994), Vol. 127, Chap. 3.
  2. J. A. Logan, “Nitrogen oxides in the troposphere: global and regional budgets,” J. Geophys. Res. 88, 10785–10807 (1983).
    [CrossRef]
  3. H. B. Singh, “Reactive nitrogen in the troposphere,” Environ. Sci. Technol. 21, 320–327 (1987).
    [CrossRef]
  4. Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
    [CrossRef]
  5. U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979).
    [CrossRef]
  6. U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980).
    [CrossRef]
  7. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic TechniquesM. Sigrist, ed. (Wiley, 1994).
  8. F. Fredriksson, B. Galle, K. Nystrom, and S. Svanberg, “Mobile lidar system for environmental probing,” Appl. Opt. 20, 4181–4189 (1981).
    [CrossRef]
  9. A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011).
    [CrossRef]
  10. V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
    [CrossRef]
  11. A. Elia, P. M. Lugara, and C. Giancaspro, “Photoacoustic detection of nitric oxide by use of a quantum-cascade laser,” Opt. Lett. 30, 988–990 (2005).
    [CrossRef]
  12. S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
    [CrossRef]
  13. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
    [CrossRef]
  14. S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
    [CrossRef]
  15. A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
    [CrossRef]
  16. P. Hess, “Resonant photoacoustic spectroscopy in topics in current chemistry,” in Topics in Current Chemistry (Springer-Verlag, 1983), Vol. 111, pp. 1–32.
  17. J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011).
    [CrossRef]
  18. M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997).
    [CrossRef]
  19. M. A. Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083–7090 (2007).
    [CrossRef]
  20. M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010–2016 (2001).
    [CrossRef]
  21. M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009).
    [CrossRef]
  22. C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
    [CrossRef]
  23. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979).
  24. J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
    [CrossRef]
  25. L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
    [CrossRef]
  26. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
    [CrossRef]
  27. H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
    [CrossRef]
  28. R. Gerlach and N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. A 23, 319–326 (1980).
    [CrossRef]
  29. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic Press, 1977).
  30. C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, and J. Sneider, “Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
    [CrossRef]
  31. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [CrossRef]
  32. C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
    [CrossRef]
  33. H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
    [CrossRef]
  34. G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50, A100–A115 (2011).
    [CrossRef]
  35. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).
  36. M. Germer and M. Wolff, “Quantum cascade laser line width investigations for high resolution photoacoustic spectroscopy,” Appl. Opt. 48, B80–B86 (2009).
    [CrossRef]

2012 (1)

C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
[CrossRef]

2011 (4)

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011).
[CrossRef]

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011).
[CrossRef]

G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50, A100–A115 (2011).
[CrossRef]

2010 (3)

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
[CrossRef]

2009 (4)

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009).
[CrossRef]

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

M. Germer and M. Wolff, “Quantum cascade laser line width investigations for high resolution photoacoustic spectroscopy,” Appl. Opt. 48, B80–B86 (2009).
[CrossRef]

2007 (1)

2006 (1)

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

2005 (1)

2003 (1)

H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

2001 (2)

A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010–2016 (2001).
[CrossRef]

2000 (1)

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

1997 (3)

S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997).
[CrossRef]

1996 (1)

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

1995 (1)

1987 (1)

H. B. Singh, “Reactive nitrogen in the troposphere,” Environ. Sci. Technol. 21, 320–327 (1987).
[CrossRef]

1983 (1)

J. A. Logan, “Nitrogen oxides in the troposphere: global and regional budgets,” J. Geophys. Res. 88, 10785–10807 (1983).
[CrossRef]

1981 (1)

1980 (2)

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980).
[CrossRef]

R. Gerlach and N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. A 23, 319–326 (1980).
[CrossRef]

1979 (1)

U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979).
[CrossRef]

Ajtai, T.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

Akimoto, H.

S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Al-Suliman, N.

A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011).
[CrossRef]

Amer, N. M.

R. Gerlach and N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. A 23, 319–326 (1980).
[CrossRef]

Amiri, M.

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

Bakhirkin, Y. A.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

Boland, W.

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

Bozoki, Z.

Bozóki, Z.

A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Brand, C.

Brown, A.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Brown, J. M.

H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Bruno, G.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Chen, W.

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011).
[CrossRef]

Cioffi, N.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Cirtiu, C. M.

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Danke, H.

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

Dastageer, M. A.

M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009).
[CrossRef]

Di Franco, C.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Dong, L.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
[CrossRef]

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

Elia, A.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

A. Elia, P. M. Lugara, and C. Giancaspro, “Photoacoustic detection of nitric oxide by use of a quantum-cascade laser,” Opt. Lett. 30, 988–990 (2005).
[CrossRef]

Fahey, D. W.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Fredriksson, F.

Galle, B.

Ganser, H.

H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Garcia, M. A.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Gerlach, R.

R. Gerlach and N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. A 23, 319–326 (1980).
[CrossRef]

Germer, M.

Giancaspro, C.

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Gondal, M. A.

A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011).
[CrossRef]

M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009).
[CrossRef]

M. A. Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083–7090 (2007).
[CrossRef]

M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010–2016 (2001).
[CrossRef]

M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997).
[CrossRef]

Gregory, G. L.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Haisch, C.

C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
[CrossRef]

Herzberg, G.

K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979).

Hess, P.

A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, and J. Sneider, “Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef]

P. Hess, “Resonant photoacoustic spectroscopy in topics in current chemistry,” in Topics in Current Chemistry (Springer-Verlag, 1983), Vol. 111, pp. 1–32.

Hill, C. J.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

Hirokawa, J.

S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Huber, K. P.

K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979).

Ieva, E.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Kahl, J.

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

Kajii, Y.

S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Kanada, M.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Karpf, A.

Kawakami, S.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Khalil, A. A. I.

A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011).
[CrossRef]

Koike, M.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Kondo, Y.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
[CrossRef]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

Kostreve, A. A.

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

Kuhnemann, F.

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

Lee, S. H.

S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

Li, J.

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011).
[CrossRef]

Logan, J. A.

J. A. Logan, “Nitrogen oxides in the troposphere: global and regional budgets,” J. Geophys. Res. 88, 10785–10807 (1983).
[CrossRef]

Losurdo, M.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Lugara, P. M.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

A. Elia, P. M. Lugara, and C. Giancaspro, “Photoacoustic detection of nitric oxide by use of a quantum-cascade laser,” Opt. Lett. 30, 988–990 (2005).
[CrossRef]

Marken, F.

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

Mastromarino, J.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Mikl’os, A.

A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Miklos, A.

Miller, J. H.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

Nakjima, H.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Nystrom, K.

Pao, Y. H.

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic Press, 1977).

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).

Patz, H. W.

U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979).
[CrossRef]

Perner, D.

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980).
[CrossRef]

U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979).
[CrossRef]

Platt, U.

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980).
[CrossRef]

U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979).
[CrossRef]

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic TechniquesM. Sigrist, ed. (Wiley, 1994).

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Rao, G. N.

Rassaei, L.

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

Ricco, M.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Sachse, G. W.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Scamarcio, G.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Schilt, S.

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

Shuler, G.

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, “Air monitoring by spectroscopy techniques,” in Chemical Analysis (Wiley, 1994), Vol. 127, Chap. 3.

Sillanpaa, M.

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Singh, H. B.

H. B. Singh, “Reactive nitrogen in the troposphere,” Environ. Sci. Technol. 21, 320–327 (1987).
[CrossRef]

Sneider, J.

Spagnolo, V.

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Svanberg, S.

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
[CrossRef]

Tittel, F. K.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
[CrossRef]

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

Toriyama, N.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Torsi, L.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Urban, W.

H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

Winkler, A.

Wolff, M.

Wolter, S. D.

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Yamani, Z. H.

M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009).
[CrossRef]

M. A. Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083–7090 (2007).
[CrossRef]

Yang, R. Q.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

Yu, B.

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011).
[CrossRef]

Zhao, Y.

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. A (1)

R. Gerlach and N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. A 23, 319–326 (1980).
[CrossRef]

Appl. Phys. B (6)

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85, 391–396 (2006).
[CrossRef]

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, “On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy,” Appl. Phys. B 70, 275–280 (2000).
[CrossRef]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100, 627–635 (2010).
[CrossRef]

A. A. I. Khalil, M. A. Gondal, and N. Al-Suliman, “Resonant photo-acoustic detection of carbon monoxide with UV laser at 213 nm,” Appl. Phys. B 103, 441–450 (2011).
[CrossRef]

V. Spagnolo, A. A. Kostreve, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

Appl. Spectrosc. Rev. (2)

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46, 440–471 (2011).
[CrossRef]

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Environ. Sci. Technol. (1)

H. B. Singh, “Reactive nitrogen in the troposphere,” Environ. Sci. Technol. 21, 320–327 (1987).
[CrossRef]

J. Environ. Sci. Health, Part A (1)

M. A. Gondal, M. A. Dastageer, and Z. H. Yamani, “Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration,” J. Environ. Sci. Health, Part A 44, 1457–1464 (2009).
[CrossRef]

J. Geophys. Res. (4)

Y. Kondo, S. Kawakami, M. Koike, D. W. Fahey, H. Nakjima, Y. Zhao, N. Toriyama, M. Kanada, G. W. Sachse, and G. L. Gregory, “Performance of an aircraft instrument for the measurement of NOy,” J. Geophys. Res. 102, 28663–28671 (1997).
[CrossRef]

U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979).
[CrossRef]

U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980).
[CrossRef]

J. A. Logan, “Nitrogen oxides in the troposphere: global and regional budgets,” J. Geophys. Res. 88, 10785–10807 (1983).
[CrossRef]

Meas. Sci. Technol. (1)

C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
[CrossRef]

Mol. Phys. (1)

H. Ganser, W. Urban, and J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

S. H. Lee, J. Hirokawa, Y. Kajii, and H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

A. Mikl’os, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Sensors (1)

C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. Lugara, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. A. Garcia, S. D. Wolter, A. Brown, and M. Ricco, “Optical and electronic NOx sensors for applications in mechatronics,” Sensors 9, 3337–3356 (2009).
[CrossRef]

TrAC, Trends Anal. Chem. (1)

L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken, and M. Sillanpaa, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC, Trends Anal. Chem. 30, 1704–1715 (2011).
[CrossRef]

Other (6)

M. W. Sigrist, “Air monitoring by spectroscopy techniques,” in Chemical Analysis (Wiley, 1994), Vol. 127, Chap. 3.

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic Press, 1977).

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).

P. Hess, “Resonant photoacoustic spectroscopy in topics in current chemistry,” in Topics in Current Chemistry (Springer-Verlag, 1983), Vol. 111, pp. 1–32.

K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979).

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic TechniquesM. Sigrist, ed. (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the PA setup cells applied for NO detection having three resonant PA cells of different geometries.

Fig. 2.
Fig. 2.

Typical Fourier spectra of the PA signal of NO showing different resonant modes for (a) cell (1), (b) cell (2), and (c) cell (3). Here 9000 ppmV of NO was buffered in 1000 mbar of Ar and the laser energy was 11 mJ at 213 nm laser line.

Fig. 3.
Fig. 3.

Photoacoustic signals recorded as a function of partial pressure of buffer gases: helium, nitrogen, and argon for (a) cell (1), (b) cell (2), and (c) cell (3). Here, 90 ppmV of NO was buffered in 1000 mbar of Ar and the laser energy was 11 mJ at 213 nm laser line.

Fig. 4.
Fig. 4.

Dependence of NO PAS signals intensity on incident laser energy for different gases in (a) cell (1), (b) cell (2), and (c) cell (3).

Fig. 5.
Fig. 5.

Dependence of PA signals on laser energy for three cells.

Fig. 6.
Fig. 6.

Effects of NO partial concentration on PA signal intensity for (a) cell (1), (b) cell (2), and (c) cell (3) buffered with helium, nitrogen, and argon and the laser energy was 11 mJ at 213 nm laser line.

Fig. 7.
Fig. 7.

Noise recorded for (a) cell (1), (b) cell (2), and (c) cell (3) by filling with only 1000 mbar of Ar and the laser energy was 11 mJ at 213 nm laser line.

Tables (1)

Tables Icon

Table 1. Comparative Merits of Three PA Cells Applied in This Study

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S=SmPCcellNtotcmσ,
υn,m,nz=ωn,m,nz2π=c2[(αmnR)2+(nzL)2]12,
SPANoFmicσlPCv(A+kvtM).

Metrics