Abstract

Optical modeling based on the transfer matrix method is employed to investigate the performance of the organic planar heterojunction solar cell with rubrene/C70 as the active layer. The detailed investigation is directed into the effects of layer thickness of the rubrene and C70 on the total absorbed photon density in the active layer. It is revealed that the optical interference plays important role in the performance of the device and the optimal device performance is achieved when the thicknesses of the rubrene and C70 are set as 33 and 28 nm. The simulated results are also confirmed by the experimental data.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, B. Ratier, W. Hojeij, B. Lucas, A. Moliton, M. Cathelinaud, C. Defranoux, and F. Flory, “Optical modeling of organic solar cells based on CuPc and C60,” Appl. Opt. 47, C251–C256 (2008).
    [CrossRef]
  2. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533–4542 (2004).
    [CrossRef]
  3. M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-ethoxycarbonyl)-propyl-1-phenyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
    [CrossRef]
  4. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
    [CrossRef]
  5. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13, 85–88 (2003).
    [CrossRef]
  6. J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
    [CrossRef]
  7. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007).
    [CrossRef]
  8. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
    [CrossRef]
  9. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
    [CrossRef]
  10. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–489 (1999).
    [CrossRef]
  11. Y. B. Long, “Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 94, 744–749 (2010).
    [CrossRef]
  12. R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
    [CrossRef]
  13. S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
    [CrossRef]
  14. H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
    [CrossRef]
  15. M. G. Walter, A. B. Rudineb, and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines 14, 759–792 (2010).
    [CrossRef]
  16. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
    [CrossRef]
  17. T. A. Berning and P. H. Berning, “Theory and calculation of optical thin films,” Phys. Thin Films 1, 69–121 (1963).
  18. N.-K. Persson, H. Arwin, and O. Inganäs, “Optical optimization of polyfluorene-fullerene blend photodiodes,” J. Appl. Phys. 97, 034503 (2005).
    [CrossRef]
  19. V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
    [CrossRef]
  20. J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
    [CrossRef]
  21. D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Determination of the optical constants and thicknesses of MEH-PPV and PFO thin films,” J. Optoelectron. Laser 20, 59–62 (2009).
  22. Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
    [CrossRef]
  23. M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
    [CrossRef]

2012 (1)

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

2011 (1)

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

2010 (3)

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

M. G. Walter, A. B. Rudineb, and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines 14, 759–792 (2010).
[CrossRef]

Y. B. Long, “Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 94, 744–749 (2010).
[CrossRef]

2009 (3)

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Determination of the optical constants and thicknesses of MEH-PPV and PFO thin films,” J. Optoelectron. Laser 20, 59–62 (2009).

2008 (2)

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, B. Ratier, W. Hojeij, B. Lucas, A. Moliton, M. Cathelinaud, C. Defranoux, and F. Flory, “Optical modeling of organic solar cells based on CuPc and C60,” Appl. Opt. 47, C251–C256 (2008).
[CrossRef]

2007 (2)

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007).
[CrossRef]

2006 (1)

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

2005 (3)

N.-K. Persson, H. Arwin, and O. Inganäs, “Optical optimization of polyfluorene-fullerene blend photodiodes,” J. Appl. Phys. 97, 034503 (2005).
[CrossRef]

M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-ethoxycarbonyl)-propyl-1-phenyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
[CrossRef]

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

2004 (4)

K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533–4542 (2004).
[CrossRef]

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
[CrossRef]

V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
[CrossRef]

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

2003 (1)

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13, 85–88 (2003).
[CrossRef]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–489 (1999).
[CrossRef]

1963 (1)

T. A. Berning and P. H. Berning, “Theory and calculation of optical thin films,” Phys. Thin Films 1, 69–121 (1963).

Arwin, H.

N.-K. Persson, H. Arwin, and O. Inganäs, “Optical optimization of polyfluorene-fullerene blend photodiodes,” J. Appl. Phys. 97, 034503 (2005).
[CrossRef]

Bazan, G. C.

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Berning, P. H.

T. A. Berning and P. H. Berning, “Theory and calculation of optical thin films,” Phys. Thin Films 1, 69–121 (1963).

Berning, T. A.

T. A. Berning and P. H. Berning, “Theory and calculation of optical thin films,” Phys. Thin Films 1, 69–121 (1963).

Blom, P. W. M.

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
[CrossRef]

Carroll, D. L.

M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-ethoxycarbonyl)-propyl-1-phenyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
[CrossRef]

Cathelinaud, M.

Cavalcanti, L.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Chan, M. Y.

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

Chen, Z. G.

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

Coakley, K. M.

K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533–4542 (2004).
[CrossRef]

Defranoux, C.

Drechsel, J.

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

Escoubas, L.

Feldman, L. C.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Flatz, T.

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

Flory, F.

Forrest, S. R.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
[CrossRef]

Fung, M. K.

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

Gerlach, A.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Gershenson, M. E.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Günes, S.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007).
[CrossRef]

Häusermann, R.

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

Heeger, A. J.

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Hojeij, W.

Hoppe, H.

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

Hou, L. T.

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

Hummelen, J. C.

V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
[CrossRef]

Inganäs, O.

N.-K. Persson, H. Arwin, and O. Inganäs, “Optical optimization of polyfluorene-fullerene blend photodiodes,” J. Appl. Phys. 97, 034503 (2005).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–489 (1999).
[CrossRef]

Kim, K.

M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-ethoxycarbonyl)-propyl-1-phenyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
[CrossRef]

Knapp, E.

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

Konovalov, O.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Koster, L. J. A.

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
[CrossRef]

Kotlarski, J. D.

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

Kowarik, S.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Kozlowski, F.

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

Lai, S. L.

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

Lee, B.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Lee, C. S.

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

Lee, S. T.

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

Lenes, M.

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

Leo, K.

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

Leong, W. L.

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Liu, P. Y.

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

Long, Y. B.

Y. B. Long, “Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 94, 744–749 (2010).
[CrossRef]

Lucas, B.

Mai, W. J.

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

Männig, B.

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

McGehee, M. D.

K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533–4542 (2004).
[CrossRef]

Meiss, J.

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

Menard, E.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Mihailetchi, V. D.

V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
[CrossRef]

Moliton, A.

Monestier, F.

Moos, M.

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

Najafov, H.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Neugebauer, H.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007).
[CrossRef]

Padinger, F.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13, 85–88 (2003).
[CrossRef]

Persson, N.-K.

N.-K. Persson, H. Arwin, and O. Inganäs, “Optical optimization of polyfluorene-fullerene blend photodiodes,” J. Appl. Phys. 97, 034503 (2005).
[CrossRef]

Petrich, A.

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–489 (1999).
[CrossRef]

Pfeiffer, M.

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

Pflaum, J.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Pfuetzner, S.

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

Podzorov, V.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Rand, B. P.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
[CrossRef]

Ratier, B.

Reinke, N. A.

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

Reyes-Reyes, M.

M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-ethoxycarbonyl)-propyl-1-phenyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
[CrossRef]

Riede, M.

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

Rittberger, R. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13, 85–88 (2003).
[CrossRef]

Rogers, J. A.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–489 (1999).
[CrossRef]

Rudineb, A. B.

M. G. Walter, A. B. Rudineb, and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines 14, 759–792 (2010).
[CrossRef]

Ruhstaller, B.

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

Sariciftci, N. S.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007).
[CrossRef]

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13, 85–88 (2003).
[CrossRef]

Schreiber, F.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Sellner, S.

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Shen, W. D.

D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Determination of the optical constants and thicknesses of MEH-PPV and PFO thin films,” J. Optoelectron. Laser 20, 59–62 (2009).

Simon, J.-J.

Slooff, L. H.

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

Someya, T.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Sun, Y.

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Sundar, V. C.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Takacs, C. J.

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Torchio, P.

Uchida, S.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
[CrossRef]

Walter, M. G.

M. G. Walter, A. B. Rudineb, and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines 14, 759–792 (2010).
[CrossRef]

Wamser, C. C.

M. G. Walter, A. B. Rudineb, and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines 14, 759–792 (2010).
[CrossRef]

Welch, G. C.

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Willett, R. L.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Wu, B.

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

Xue, J.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
[CrossRef]

Zaumseil, J.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Zhen, H. Y.

D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Determination of the optical constants and thicknesses of MEH-PPV and PFO thin films,” J. Optoelectron. Laser 20, 59–62 (2009).

Zhou, Q.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Zhu, D. X.

D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Determination of the optical constants and thicknesses of MEH-PPV and PFO thin films,” J. Optoelectron. Laser 20, 59–62 (2009).

Adv. Funct. Mater. (1)

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13, 85–88 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Doping-induced efficiency enhancement in organic photovoltaic devices,” Appl. Phys. Lett. 90, 023504(2007).
[CrossRef]

J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Appl. Phys. Lett. 86, 244102 (2005).
[CrossRef]

M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-ethoxycarbonyl)-propyl-1-phenyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
[CrossRef]

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85, 5757–5759 (2004).
[CrossRef]

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojunction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307 (2009).
[CrossRef]

Chem. Mater. (1)

K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533–4542 (2004).
[CrossRef]

Chem. Rev. (1)

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007).
[CrossRef]

J. Appl. Phys. (4)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–489 (1999).
[CrossRef]

R. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis,” J. Appl. Phys. 106, 104507(2009).
[CrossRef]

N.-K. Persson, H. Arwin, and O. Inganäs, “Optical optimization of polyfluorene-fullerene blend photodiodes,” J. Appl. Phys. 97, 034503 (2005).
[CrossRef]

J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, “Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys. 103, 084502 (2008).
[CrossRef]

J. Optoelectron. Laser (1)

D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Determination of the optical constants and thicknesses of MEH-PPV and PFO thin films,” J. Optoelectron. Laser 20, 59–62 (2009).

J. Porphyrins Phthalocyanines (1)

M. G. Walter, A. B. Rudineb, and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines 14, 759–792 (2010).
[CrossRef]

Nat. Mater. (2)

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater. 11, 44–48 (2011).
[CrossRef]

Optoelectron. Lett. (1)

Z. G. Chen, P. Y. Liu, L. T. Hou, W. J. Mai, and B. Wu, “Optimization and degradation of rubrene/C70 heterojunction solar cells,” Optoelectron. Lett. 8, 93–96 (2012).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, “Anomalous roughness evolution of rubrene thin films observed in real time during growth,” Phys. Chem. Chem. Phys. 8, 1834–1836 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
[CrossRef]

Phys. Thin Films (1)

T. A. Berning and P. H. Berning, “Theory and calculation of optical thin films,” Phys. Thin Films 1, 69–121 (1963).

Science (1)

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646(2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

Y. B. Long, “Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 94, 744–749 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic structure of the modeled multilayer device. The incident light is perpendicular to the interface, and the x direction is same as the direction of incident light.

Fig. 2.
Fig. 2.

Optical refraction indices n and extinction coefficients k of (a) rubrene and (b) C70 layers as a function of wavelength.

Fig. 3.
Fig. 3.

Simulated absorption spectra of rubrene, C70, and rubrene/C70.

Fig. 4.
Fig. 4.

(a) Total absorbed photon density within diffusion length for C70 thicknesses of 25, 35, and 45 nm, respectively; (b) Jsc for 35 nm C70 thickness as a function of rubrene thickness.

Fig. 5.
Fig. 5.

Distributions of |E(x)|2 at 530 nm as a function of the position in the device. Middle red line: the D/A interface. (a) Device with rubrene thickness of 33 nm. (b) Device with rubrene thickness of 57 nm.

Fig. 6.
Fig. 6.

(a) Simulated Jsc as a function of the thickness of C70. (b) Experimental J-V curves of the OSCs with 28 nm C70 and 100 nm C70, respectively. All rubrene thicknesses are 33 nm.

Fig. 7.
Fig. 7.

Light absorption efficiency within diffusion length over a spectral range from 400 to 700 nm as a function of C70 thickness. Black line: optimal C70 thickness.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Qj(x,λ)=2πcε0kjnj|E(x)|2λ,
A(λ)=1I(λ)xLdQ(x,λ)dx,
Nd=A(λ)I(λ)hcλdλ,
Jsc=ηIQENdq,

Metrics