Abstract

For glass slides covered by two-dimensional array of polystyrene spheres with Au nanocaps on the top surface, polar Kerr rotation θK peaks occur in the visible region and shift with the polystyrene sphere diameter. The θK spectra arise from the spectral properties of the transmission/reflectance ratio. The observed tunable magneto-optical behavior has potential applications in magneto-optical filters.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Phil. Trans. R. Soc. London 136, 1–20 (1846).
    [CrossRef]
  2. J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. 3, 321 (1877).
    [CrossRef]
  3. J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. 5, 161 (1878).
    [CrossRef]
  4. A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
    [CrossRef]
  5. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
    [CrossRef]
  6. H. Xu and B. S. Ham, “Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings,” Opt. Express 16, 21375–21382 (2008).
    [CrossRef]
  7. S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
    [CrossRef]
  8. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
    [CrossRef]
  9. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [CrossRef]
  10. P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
    [CrossRef]
  11. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
    [CrossRef]
  12. M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
    [CrossRef]
  13. E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
    [CrossRef]
  14. H. Shimizu, M. Miyamura, and M. Tanaka, “Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magnetooptical effect and theoretical analysis,” Appl. Phys. Lett. 78, 1523–1525 (2001).
    [CrossRef]
  15. H. Shimizu and M. Tanaka, “Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters,” J. Appl. Phys. 89, 7281–7283 (2001).
    [CrossRef]
  16. M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
    [CrossRef]
  17. L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
    [CrossRef]
  18. A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
    [CrossRef]
  19. V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
    [CrossRef]
  20. X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
    [CrossRef]
  21. D. Sharma, P. Sharma, and N. Thakur, “Analysis of the optical constants of spun cast polystyrene thin film,” Optoelectron. Adv. Mater. 3, 145 (2009).
  22. W. A. Challener and S. L. Grove, “Refractive indices of reactive magnetooptical thin films,” Appl. Opt. 29, 3040–3045 (1990).
    [CrossRef]

2009 (2)

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef]

D. Sharma, P. Sharma, and N. Thakur, “Analysis of the optical constants of spun cast polystyrene thin film,” Optoelectron. Adv. Mater. 3, 145 (2009).

2008 (2)

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
[CrossRef]

H. Xu and B. S. Ham, “Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings,” Opt. Express 16, 21375–21382 (2008).
[CrossRef]

2007 (1)

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

2006 (2)

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

2005 (3)

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

2003 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

2001 (2)

H. Shimizu, M. Miyamura, and M. Tanaka, “Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magnetooptical effect and theoretical analysis,” Appl. Phys. Lett. 78, 1523–1525 (2001).
[CrossRef]

H. Shimizu and M. Tanaka, “Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters,” J. Appl. Phys. 89, 7281–7283 (2001).
[CrossRef]

2000 (2)

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

1999 (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
[CrossRef]

1997 (2)

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

1990 (1)

1878 (1)

J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. 5, 161 (1878).
[CrossRef]

1877 (1)

J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. 3, 321 (1877).
[CrossRef]

1846 (1)

M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Phil. Trans. R. Soc. London 136, 1–20 (1846).
[CrossRef]

Abe, M.

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
[CrossRef]

Aktsipetrov, O.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Albrecht, M.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Arai, K.

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
[CrossRef]

Armelles, G.

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Baryshev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Belotelov, V. I.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Boneberg, J.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Challener, W. A.

Chan, Y.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Chen, L. Y.

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Cohen, A. E.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef]

Cortie, M. B.

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
[CrossRef]

Dancil, K. S.

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Faraday, M.

M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Phil. Trans. R. Soc. London 136, 1–20 (1846).
[CrossRef]

Fedyanin, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Fujii, M.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

Fujii, T.

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
[CrossRef]

Fujikawa, R.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

García-Martín, A.

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Ghadiri, M. R.

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Granovsky, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Grishin, A. M.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

Grove, S. L.

Guhr, I. L.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Ham, B. S.

Harris, N.

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
[CrossRef]

Hayashi, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

Hu, G.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Hu, X.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Inoue, M.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
[CrossRef]

Iwata, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

Jain, P. K.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef]

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Kato, T.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

Kerr, J.

J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. 5, 161 (1878).
[CrossRef]

J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. 3, 321 (1877).
[CrossRef]

Khanikaev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Khartsev, S. I.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

Kitamoto, Y.

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

Kolb, R.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Leiderer, P.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Lim, P. B.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Maaroof, A. I.

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
[CrossRef]

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Miyamura, M.

H. Shimizu, M. Miyamura, and M. Tanaka, “Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magnetooptical effect and theoretical analysis,” Appl. Phys. Lett. 78, 1523–1525 (2001).
[CrossRef]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Murzina, T.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Nishimura, K.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Pereira, S.

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Qian, Y. H.

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Rafailovich, M.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Sailor, M. J.

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Schatz, G.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Shang, C. H.

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Sharma, D.

D. Sharma, P. Sharma, and N. Thakur, “Analysis of the optical constants of spun cast polystyrene thin film,” Optoelectron. Adv. Mater. 3, 145 (2009).

Sharma, P.

D. Sharma, P. Sharma, and N. Thakur, “Analysis of the optical constants of spun cast polystyrene thin film,” Optoelectron. Adv. Mater. 3, 145 (2009).

Shimizu, H.

H. Shimizu and M. Tanaka, “Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters,” J. Appl. Phys. 89, 7281–7283 (2001).
[CrossRef]

H. Shimizu, M. Miyamura, and M. Tanaka, “Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magnetooptical effect and theoretical analysis,” Appl. Phys. Lett. 78, 1523–1525 (2001).
[CrossRef]

Shin, K.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Sokolov, J.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Stein, R.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Takayama, A.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Takeda, E.

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

Tanaka, M.

H. Shimizu and M. Tanaka, “Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters,” J. Appl. Phys. 89, 7281–7283 (2001).
[CrossRef]

H. Shimizu, M. Miyamura, and M. Tanaka, “Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magnetooptical effect and theoretical analysis,” Appl. Phys. Lett. 78, 1523–1525 (2001).
[CrossRef]

Thakur, N.

D. Sharma, P. Sharma, and N. Thakur, “Analysis of the optical constants of spun cast polystyrene thin film,” Optoelectron. Adv. Mater. 3, 145 (2009).

Todoroki, N.

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

Tomita, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

Tsunashima, S.

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

Uchida, H.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Ulbrich, T. C.

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Walsworth, R.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef]

Wang, Y. J.

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Wieczorek, L.

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
[CrossRef]

Williams, K.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Wu, W. L.

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

Xiao, Y. H.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef]

Xu, H.

Zheng, Y. X.

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Zhou, S. M.

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Zvezdin, A. K.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

H. Shimizu, M. Miyamura, and M. Tanaka, “Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magnetooptical effect and theoretical analysis,” Appl. Phys. Lett. 78, 1523–1525 (2001).
[CrossRef]

High Performance Polymers (1)

X. Hu, K. Shin, M. Rafailovich, J. Sokolov, R. Stein, Y. Chan, K. Williams, W. L. Wu, and R. Kolb, “Anomalies in the optical index of refraction of spun cast polystyrene thin films,” High Performance Polymers 12, 621–629 (2000).
[CrossRef]

J. Appl. Phys. (4)

H. Shimizu and M. Tanaka, “Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters,” J. Appl. Phys. 89, 7281–7283 (2001).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5770 (1999).
[CrossRef]

E. Takeda, N. Todoroki, Y. Kitamoto, M. Abe, M. Inoue, T. Fujii, and K. Arai, “Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Perot resonator,” J. Appl. Phys. 87, 6782–6784 (2000).
[CrossRef]

J. Phys. D (1)

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Nano Lett. (1)

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef]

Nat. Mater. (1)

M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
[CrossRef]

Opt. Eng. (1)

L. Y. Chen, S. M. Zhou, Y. X. Zheng, Y. H. Qian, C. H. Shang, and Y. J. Wang, “Method to measure spectra of both the magneto-optical Kerr and the Faraday effect,” Opt. Eng. 36, 3188–3192 (1997).
[CrossRef]

Opt. Express (1)

Optoelectron. Adv. Mater. (1)

D. Sharma, P. Sharma, and N. Thakur, “Analysis of the optical constants of spun cast polystyrene thin film,” Optoelectron. Adv. Mater. 3, 145 (2009).

Phil. Trans. R. Soc. London (1)

M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Phil. Trans. R. Soc. London 136, 1–20 (1846).
[CrossRef]

Philos. Mag. (2)

J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. 3, 321 (1877).
[CrossRef]

J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. 5, 161 (1878).
[CrossRef]

Phys. Rev. B (1)

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, “Magneto-optical kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles,” Phys. Rev. Lett. 96, 167402 (2006).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Science (1)

V. S.-Y. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[CrossRef]

Small (1)

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4, 2292–2299 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of a HCP array of PSs with d=800nm . (b) Diagram of θK, reflection, and transmission measurements.

Fig. 2.
Fig. 2.

θK spectra for sample Au (20 nm)/PS array/glass with d=800nm (a), 903 nm (b), 1034 nm (c), and 1101 nm (d). In comparison, the results of bare glass slide (red line) are also given in (a).

Fig. 3.
Fig. 3.

Spectra of T (a), R (b), T/R ratio (c), and θK (d) for the sample Au (20 nm)/PS array/glass with d=800nm. The inset in (b) shows the inverse λn as a function of the order number n of the R minima.

Fig. 4.
Fig. 4.

Wavelengths for the θK (solid symbols) and T/R (open symbols) peaks versus d for the sample Au (20 nm)/PS array/glass. Solid lines refer to linear fit.

Fig. 5.
Fig. 5.

Diagram of R and T measurements for Au/PS array/glass (a) and glass/Au (b) samples. In (a), r12(t12), r23(t23), and r34(t34) are the reflectivity (transmission) at the air/Au, PS/glass, and glass/air interfaces, and t32 and t21 are the transmission at the glass/PS and Au/air interfaces, respectively.

Fig. 6.
Fig. 6.

θK spectra of the bare glass slide and glass slide covered by a Au film at the bottom are given.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θK=I1θK1+I2θK2I1+I2,
R=I1+I2I0,
T=I3/I0=t12t23t34.
θK=(r34/t34)t32t21(T/R)θK2.

Metrics