Abstract

We report the lattice damage and annealing properties of the 500 keV Si+ ions implanted Nd:YVO4 crystal with different doses. The Rutherford backscattering spectrometry/channeling technique was used to analyze the damage profiles of ion-implanted samples. A series of post-implant annealing was performed at temperatures from 250 °C to 400 °C to investigate the relation between lattice damage profile and the waveguide formation. Implantations at doses of more than 5×1014ions/cm2 can result in high damage ratio in the near-surface region and the lattice structure cannot be restored even after annealing at 400 °C. Such seriously damaged lattice is relatively stable and contributes to the waveguide structure. Convergence of the refractive index at the surface region after ion implantation is believed mainly due to the elastic collisions with the target atoms caused by nuclear energy loss.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Agnesi, C. Pennacchio, and G. C. Reali, “High-power diode-pumped picoseconds Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
    [CrossRef]
  2. A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998).
    [CrossRef]
  3. G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
    [CrossRef]
  4. P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the F43/2–I49/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
    [CrossRef]
  5. P. D. Townsend, “An overview of ion-implanted optical waveguide profiles,” Nucl. Instrum. Methods Phys. Res. B 46, 18–25 (1990).
    [CrossRef]
  6. C. Buchal, “Ion implantation for photorefractive devices and optical emitters,” Nucl. Instrum. Methods Phys. Res. B 166, 743–749 (2000).
    [CrossRef]
  7. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67, 131–150 (1998).
    [CrossRef]
  8. M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998).
    [CrossRef]
  9. F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002).
    [CrossRef]
  10. F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002).
    [CrossRef]
  11. G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007).
    [CrossRef]
  12. F. Chen, X. L. Wang, and K. M. Wang, “Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,” Opt. Lett. 27, 1111–1113(2002).
    [CrossRef]
  13. F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002).
    [CrossRef]
  14. M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
    [CrossRef]
  15. G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004).
    [CrossRef]
  16. X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
    [CrossRef]
  17. K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
    [CrossRef]
  18. L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970).
    [CrossRef]
  19. F. Harbsmeier and W. Bolse, “Ion beam induced amorphization in α quartz,” J. Appl. Phys. 83, 4049–4054 (1998).
    [CrossRef]
  20. F. Harbsmeier and W. Bolse, “Nucleation and growth of the amorphous phase in Na-irradiated quartz,” Mater. Sci. Forum 248-249, 279–284 (1997).
    [CrossRef]
  21. W. Bolse, “Amorphization and recrystallization of covalent tetrahedral networks,” Nucl. Instrum. Methods Phys. Res. B 148, 83–92 (1999).
    [CrossRef]
  22. K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
    [CrossRef]
  23. J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
    [CrossRef]
  24. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  25. B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
    [CrossRef]
  26. A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
    [CrossRef]
  27. M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
    [CrossRef]
  28. W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998).
    [CrossRef]
  29. W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
    [CrossRef]
  30. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
    [CrossRef]
  31. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
    [CrossRef]
  32. F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
    [CrossRef]
  33. J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60, 1062–1096 (1972).
    [CrossRef]
  34. S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
    [CrossRef]
  35. W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004).
    [CrossRef]
  36. E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997).
    [CrossRef]

2011

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

2007

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
[CrossRef]

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007).
[CrossRef]

2006

K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
[CrossRef]

2005

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

2004

G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004).
[CrossRef]

2003

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

2002

F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,” Opt. Lett. 27, 1111–1113(2002).
[CrossRef]

F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

2001

W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
[CrossRef]

2000

P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the F43/2–I49/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
[CrossRef]

C. Buchal, “Ion implantation for photorefractive devices and optical emitters,” Nucl. Instrum. Methods Phys. Res. B 166, 743–749 (2000).
[CrossRef]

1999

W. Bolse, “Amorphization and recrystallization of covalent tetrahedral networks,” Nucl. Instrum. Methods Phys. Res. B 148, 83–92 (1999).
[CrossRef]

1998

F. Harbsmeier and W. Bolse, “Ion beam induced amorphization in α quartz,” J. Appl. Phys. 83, 4049–4054 (1998).
[CrossRef]

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67, 131–150 (1998).
[CrossRef]

M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998).
[CrossRef]

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998).
[CrossRef]

G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

1997

A. Agnesi, C. Pennacchio, and G. C. Reali, “High-power diode-pumped picoseconds Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
[CrossRef]

E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997).
[CrossRef]

F. Harbsmeier and W. Bolse, “Nucleation and growth of the amorphous phase in Na-irradiated quartz,” Mater. Sci. Forum 248-249, 279–284 (1997).
[CrossRef]

1996

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

1994

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

1990

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

P. D. Townsend, “An overview of ion-implanted optical waveguide profiles,” Nucl. Instrum. Methods Phys. Res. B 46, 18–25 (1990).
[CrossRef]

1972

J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60, 1062–1096 (1972).
[CrossRef]

1970

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970).
[CrossRef]

Agnesi, A.

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998).
[CrossRef]

A. Agnesi, C. Pennacchio, and G. C. Reali, “High-power diode-pumped picoseconds Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Ambri, M.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

Bachmann, T.

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998).
[CrossRef]

Balanzatm, E.

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Bernas, H.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Bibra, M. L.

M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998).
[CrossRef]

Bolse, W.

W. Bolse, “Amorphization and recrystallization of covalent tetrahedral networks,” Nucl. Instrum. Methods Phys. Res. B 148, 83–92 (1999).
[CrossRef]

F. Harbsmeier and W. Bolse, “Ion beam induced amorphization in α quartz,” J. Appl. Phys. 83, 4049–4054 (1998).
[CrossRef]

F. Harbsmeier and W. Bolse, “Nucleation and growth of the amorphous phase in Na-irradiated quartz,” Mater. Sci. Forum 248-249, 279–284 (1997).
[CrossRef]

Bonardi, N.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

Bouffard, S.

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

Brenier, R.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

Brisard, F.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Buchal, C.

C. Buchal, “Ion implantation for photorefractive devices and optical emitters,” Nucl. Instrum. Methods Phys. Res. B 166, 743–749 (2000).
[CrossRef]

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Canning, J.

M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998).
[CrossRef]

Canut, B.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

Chaumont, J.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

Chen, F.

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,” Opt. Lett. 27, 1111–1113(2002).
[CrossRef]

F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002).
[CrossRef]

Chen, M.

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Chin, M. K.

G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Costantini, J. M.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Dooryhee, E.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Feldman, L. C.

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970).
[CrossRef]

Fu, G.

G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007).
[CrossRef]

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

Fujino, Y.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

Gaiduk, P. I.

E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Gibbons, J. F.

J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60, 1062–1096 (1972).
[CrossRef]

Gobbi, P. G.

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998).
[CrossRef]

Grob, J. J.

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

Gu, G. Q.

G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Haaks, M.

K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
[CrossRef]

Hage-Ali, M.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

Harbsmeier, F.

F. Harbsmeier and W. Bolse, “Ion beam induced amorphization in α quartz,” J. Appl. Phys. 83, 4049–4054 (1998).
[CrossRef]

F. Harbsmeier and W. Bolse, “Nucleation and growth of the amorphous phase in Na-irradiated quartz,” Mater. Sci. Forum 248-249, 279–284 (1997).
[CrossRef]

Hervieu, M.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Höche, Th.

W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
[CrossRef]

Kamarou, A.

W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004).
[CrossRef]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67, 131–150 (1998).
[CrossRef]

Li, S.-L.

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

Liu, X. H.

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

Loubet, J. L.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

Lu, Q. M.

F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002).
[CrossRef]

F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002).
[CrossRef]

Maier, K.

K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
[CrossRef]

Márquez, H.

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
[CrossRef]

G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004).
[CrossRef]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

Meftah, A.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Méndez, A.

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

Moretti, P.

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
[CrossRef]

Naramoto, H.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

Olivares, J.

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Opfermann, T.

E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997).
[CrossRef]

Opfermann, Th.

W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
[CrossRef]

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998).
[CrossRef]

Ozawa, K.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

Peithmann, K.

K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
[CrossRef]

Pennacchio, C.

Peuser, P.

Pitaval, M.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

Ramos, S. M. M.

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

Reali, G. C.

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998).
[CrossRef]

A. Agnesi, C. Pennacchio, and G. C. Reali, “High-power diode-pumped picoseconds Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
[CrossRef]

Roberts, A.

M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998).
[CrossRef]

Rodgers, J. M.

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Sánchez-Morales, M. E.

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
[CrossRef]

G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004).
[CrossRef]

Sato, K.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

Schrempel, F.

W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
[CrossRef]

Stoquert, J. P.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

Studer, F.

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Thevenard, P.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

Toulemonde, M.

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

Townsend, P. D.

P. D. Townsend, “An overview of ion-implanted optical waveguide profiles,” Nucl. Instrum. Methods Phys. Res. B 46, 18–25 (1990).
[CrossRef]

Vázquez, G. V.

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
[CrossRef]

G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004).
[CrossRef]

Wang, K. M.

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,” Opt. Lett. 27, 1111–1113(2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002).
[CrossRef]

Wang, K.-M.

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

Wang, X. L.

G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002).
[CrossRef]

F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,” Opt. Lett. 27, 1111–1113(2002).
[CrossRef]

F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002).
[CrossRef]

Wang, X.-L.

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

Wendler, E.

W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004).
[CrossRef]

E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997).
[CrossRef]

Wesch, W.

W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004).
[CrossRef]

W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
[CrossRef]

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998).
[CrossRef]

Yamaguchi, S.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

Zamani-meymian, M. R.

K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
[CrossRef]

Zeller, P.

Zhang, G.

G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Zhang, S. M.

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

Zhao, J. H.

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

Zhou, F.

G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

Appl. Phys. B

K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006).
[CrossRef]

Appl. Phys. B: Lasers Opt.

F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67, 131–150 (1998).
[CrossRef]

Appl. Phys. Lett.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Appl. Surf. Sci.

F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002).
[CrossRef]

Electron. Lett.

G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998).
[CrossRef]

IEEE J. Quantum Electron.

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998).
[CrossRef]

J. Appl. Phys.

E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004).
[CrossRef]

F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003).
[CrossRef]

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970).
[CrossRef]

F. Harbsmeier and W. Bolse, “Ion beam induced amorphization in α quartz,” J. Appl. Phys. 83, 4049–4054 (1998).
[CrossRef]

J. Non-Cryst. Solids

M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998).
[CrossRef]

Mater. Sci. Forum

F. Harbsmeier and W. Bolse, “Nucleation and growth of the amorphous phase in Na-irradiated quartz,” Mater. Sci. Forum 248-249, 279–284 (1997).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

W. Bolse, “Amorphization and recrystallization of covalent tetrahedral networks,” Nucl. Instrum. Methods Phys. Res. B 148, 83–92 (1999).
[CrossRef]

B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996).
[CrossRef]

J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007).
[CrossRef]

P. D. Townsend, “An overview of ion-implanted optical waveguide profiles,” Nucl. Instrum. Methods Phys. Res. B 46, 18–25 (1990).
[CrossRef]

C. Buchal, “Ion implantation for photorefractive devices and optical emitters,” Nucl. Instrum. Methods Phys. Res. B 166, 743–749 (2000).
[CrossRef]

M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990).
[CrossRef]

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998).
[CrossRef]

W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001).
[CrossRef]

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990).
[CrossRef]

W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004).
[CrossRef]

Opt. Commun.

G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004).
[CrossRef]

Opt. Lett.

Opt. Mater. (Amsterdam)

X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011).
[CrossRef]

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007).
[CrossRef]

Phys. Rev. B

A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994).
[CrossRef]

Proc. IEEE

J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60, 1062–1096 (1972).
[CrossRef]

Radiat. Eff. Defects Solids

S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998).
[CrossRef]

Surf. Coat. Technol.

G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

RBS/channeling spectra of Si+ ions implanted Nd:YVO4 at the doses of 2×1013, 1×1014, 5×1014, and 2×1015ions/cm2. The aligned and random spectra are presented for comparison.

Fig. 2.
Fig. 2.

(a) Damage profiles of Si+ ions implanted Nd:YVO4 at the doses of 2×1013, 1×1014, 5×1014, and 2×1015ions/cm2; (b) Energy loss of the 500 keV silicon ions implanted into YVO4: solid and dashed lines represent electronic energy loss and nuclear energy loss, respectively.

Fig. 3.
Fig. 3.

RBS/channeling spectra of Si+ ions implanted Nd:YVO4 at the doses of 2×1013, 1×1014, 5×1014, and 2×1015ions/cm2 after annealing at temperature of (a) 250 °C for an hour and (b) 300 °C for an hour. The aligned and random spectra are presented for comparison.

Fig. 4.
Fig. 4.

The damage profile of Si+ ions implanted Nd:YVO4 at the dose of (a) 5×1014ions/cm2 and (b) 2×1015ions/cm2 in as-implanted in comparison with that of after annealing at the temperature of 250 °C and 300 °C for an hour.

Fig. 5.
Fig. 5.

Measured relative intensity of the TE polarized light reflected from the prism versus the ordinary refractive index (no) of the incident light for (a) sample 3 and (b) sample 4 before and after different annealing treatments.

Fig. 6.
Fig. 6.

Evolution of the damage cross section versus the electronic stopping power. Square: oxygen (O); circle: magnesium (Mg); triangle: silicon (Si).

Fig. 7.
Fig. 7.

Near-field optical intensity profiles of the Nd:YVO4 planar waveguides formed by Si+ ions implantation. (a), (b) The 2D and 3D distributions for sample 4 after annealing at 350 °C.

Tables (3)

Tables Icon

Table 1. Implantation Parameters for Si+-Implanted Nd:YVO4

Tables Icon

Table 2. Annealing Time (h) for Si+-Implanted Nd:YVO4

Tables Icon

Table 3. Change of Effective Refractive Index at the Sample Surface in As-Implanted Samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=1exp((Adϕ)n),

Metrics