Abstract

With the recent development of less costly uncooled detector technology, expensive optics are among the remaining significant cost drivers. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the fabrication of a molded chalcogenide-glass lens for car night vision and on the evaluation of the lens. The moldability of chalcogenide glass was characterized through transcription properties of the mold’s surface. In addition, both IR transmittance and x-ray diffraction patterns of the molded chalcogenide-glass lens were evaluated to verify the compositional and structural stability of the glass material under the given molding conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Graham, R. A. LeBlanc, and R. Hilton, “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216–224 (2003).
    [CrossRef]
  2. D. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim, J. H. Hong, and K. S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010).
    [CrossRef]
  3. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
    [CrossRef]
  4. G. Curatu, “Design and fabrication of low-cost thermal imaging optics using precision chalcogenide glass molding,” Proc. SPIE 7060, 706008 (2008).
    [CrossRef]
  5. G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
    [CrossRef]
  6. B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
    [CrossRef]
  7. Ningbo University, “Chalcogenide Glasses,” http://www.ir-glass.com/en/product.php .
  8. D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
    [CrossRef]
  9. X. H. Lu and L. S. Khim, “A statistical experimental study of the injection molding of optical lenses,” Mater. Process. Technol. 113, 189–195 (2001).
    [CrossRef]
  10. A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses: a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
    [CrossRef]
  11. M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M1 (2006).
    [CrossRef]
  12. X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
    [CrossRef]
  13. J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293–4297 (1989).
    [CrossRef]

2010 (1)

2008 (2)

G. Curatu, “Design and fabrication of low-cost thermal imaging optics using precision chalcogenide glass molding,” Proc. SPIE 7060, 706008 (2008).
[CrossRef]

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

2006 (2)

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
[CrossRef]

M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M1 (2006).
[CrossRef]

2005 (1)

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses: a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

2004 (2)

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

2003 (2)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[CrossRef]

A. Graham, R. A. LeBlanc, and R. Hilton, “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216–224 (2003).
[CrossRef]

2001 (1)

X. H. Lu and L. S. Khim, “A statistical experimental study of the injection molding of optical lenses,” Mater. Process. Technol. 113, 189–195 (2001).
[CrossRef]

1989 (1)

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293–4297 (1989).
[CrossRef]

Adam, J.-L.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[CrossRef]

Binkley, B.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
[CrossRef]

Boussard-Pledel, C.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Bureau, B.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Cha, D. H.

D. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim, J. H. Hong, and K. S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010).
[CrossRef]

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Coq, D. L.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Curatu, C.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
[CrossRef]

Curatu, G.

G. Curatu, “Design and fabrication of low-cost thermal imaging optics using precision chalcogenide glass molding,” Proc. SPIE 7060, 706008 (2008).
[CrossRef]

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
[CrossRef]

Graham, A.

A. Graham, R. A. LeBlanc, and R. Hilton, “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216–224 (2003).
[CrossRef]

Guimond, Y.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[CrossRef]

Hilton, R.

A. Graham, R. A. LeBlanc, and R. Hilton, “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216–224 (2003).
[CrossRef]

Hong, J. H.

Hwang, Y.

Jain, A.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses: a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

Katsuki, M.

M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M1 (2006).
[CrossRef]

Khim, L. S.

X. H. Lu and L. S. Khim, “A statistical experimental study of the injection molding of optical lenses,” Mater. Process. Technol. 113, 189–195 (2001).
[CrossRef]

Kim, H. J.

D. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim, J. H. Hong, and K. S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010).
[CrossRef]

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Kim, H. U.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Kim, J. H.

D. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim, J. H. Hong, and K. S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010).
[CrossRef]

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Kim, S. S.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Kodjikian, S.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

LeBlanc, R. A.

A. Graham, R. A. LeBlanc, and R. Hilton, “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216–224 (2003).
[CrossRef]

Lee, J. K.

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Lee, K. S.

Lu, X. H.

X. H. Lu and L. S. Khim, “A statistical experimental study of the injection molding of optical lenses,” Mater. Process. Technol. 113, 189–195 (2001).
[CrossRef]

Lucas, J.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

Lucas, P.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Ma, H.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Ma, H. L.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

Nishii, J.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293–4297 (1989).
[CrossRef]

Park, H. S.

Riley, M. R.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Simmons, J. H.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Smektala, F.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Tinch, D.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
[CrossRef]

Troles, J.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Yamagishi, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293–4297 (1989).
[CrossRef]

Yamashita, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293–4297 (1989).
[CrossRef]

Yi, A. Y.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses: a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

Zhang, X.

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

Zhang, X. H.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[CrossRef]

Appl. Opt. (1)

J. Am. Ceram. Soc. (1)

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses: a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

J. Mater. Sci. (1)

J. Nishii, T. Yamashita, and T. Yamagishi, “Oxide impurity absorptions in Ge-Se-Te glass fibers,” J. Mater. Sci. 24, 4293–4297 (1989).
[CrossRef]

J. Non-Cryst. Solids (3)

X. Zhang, H. L. Ma, J. Lucas, Y. Guimond, and S. Kodjikian, “Optical fibers and molded optics in infrared transparent glass-ceramic,” J. Non-Cryst. Solids 336, 49–52 (2004).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326–327, 519–523 (2003).
[CrossRef]

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, and J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[CrossRef]

Mater. Manufac. Process. (1)

D. H. Cha, H. J. Kim, J. K. Lee, H. U. Kim, S. S. Kim, and J. H. Kim, “A study of mold grinding and pressing conditions in the molding of aspheric glass lenses for camera phone module,” Mater. Manufac. Process. 23, 683–689 (2008).
[CrossRef]

Mater. Process. Technol. (1)

X. H. Lu and L. S. Khim, “A statistical experimental study of the injection molding of optical lenses,” Mater. Process. Technol. 113, 189–195 (2001).
[CrossRef]

Proc. SPIE (4)

G. Curatu, “Design and fabrication of low-cost thermal imaging optics using precision chalcogenide glass molding,” Proc. SPIE 7060, 706008 (2008).
[CrossRef]

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens,” Proc. SPIE 6206, 62062M (2006).
[CrossRef]

A. Graham, R. A. LeBlanc, and R. Hilton, “Low cost infrared glass for IR imaging applications,” Proc. SPIE 5078, 216–224 (2003).
[CrossRef]

M. Katsuki, “Transferability of glass lens molding,” Proc. SPIE 6149, 61490M1 (2006).
[CrossRef]

Other (1)

Ningbo University, “Chalcogenide Glasses,” http://www.ir-glass.com/en/product.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Layout of optical system.

Fig. 2.
Fig. 2.

Polychromatic MTF plots on-axis, at 0.5 field, and at 1.0 field: (a) at 25 °C and (b) at 80 °C.

Fig. 3.
Fig. 3.

Schematic of the molding part in GMP-54-5S.

Fig. 4.
Fig. 4.

Surface images of the molded chalcogenide-glass lens: (a) lens 1 and (b) lens 2.

Fig. 5.
Fig. 5.

Form error comparison of the prototype mold and the molded lens: (a) surface A and (b) surface B.

Fig. 6.
Fig. 6.

Flow chart of glass lens fabrication.

Fig. 7.
Fig. 7.

Form error of the chalcogenide-glass lens molded using a compensated mold: (a) surface A and (b) surface B.

Fig. 8.
Fig. 8.

Surface roughness of the chalcogenide-glass lens molded using compensated mold: (a) surface A and (b) surface B.

Fig. 9.
Fig. 9.

Tilt and decenter of the molded chalcogenide-glass lens: (a) surface A and (b) surface B.

Fig. 10.
Fig. 10.

Transmittance of the chalcogenide glass before and after molding.

Fig. 11.
Fig. 11.

XRD patterns of the chalcogenide glass: (a) before molding and (b) after molding.

Fig. 12.
Fig. 12.

Transmittance comparison of chalcogenide glass with and without AR coating.

Fig. 13.
Fig. 13.

The finished lens and lens assembly.

Fig. 14.
Fig. 14.

Thermal images obtained with an assembly of molded chalcogenide-glass lenses associated with an uncooled detector at distance from a pedestrian of 50, 100, and 200 m.

Tables (7)

Tables Icon

Table 1. Thermal and Mechanical Properties of Chalcogenide Glass (NBU-IR1)

Tables Icon

Table 2. Fabrication Tolerances of Chalcogenide-glass Lens Designed in this Study

Tables Icon

Table 3. Processing Conditions for Mold Fabrication

Tables Icon

Table 4. Form Error and Roughness of Fabricated Mold Surface Before and After Compensation

Tables Icon

Table 5. Molding Conditions and Process Parameters Used in This Study

Tables Icon

Table 6. Aspheric Coefficients for Mold Fabrication Before and After Compensation

Tables Icon

Table 7. Lens Design Parameters, Molding Tolerance, and Measured Values

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z=C·x21+1(1+K)·C2·x2+i=1nAi·xi,

Metrics