Abstract

An n=1 flat lens based on photonic crystal semiconductor technology is evaluated for infrared detection purposes. The idea consists in exploiting the backscattered waves of an incident plane wave impinging on a target placed in the focal region of a flat lens. It is shown that subwavelength detection of micronic dielectric targets can be obtained at 1.55 μm using the double focus of reflected waves induced by negative refraction. Complex relations among the intrinsic nature, the shape and size of the target, and detection efficiency are interpreted in terms of target eigenmode excitation. Reflectivity is modulated by the intrinsic mode nature, transverse, circular, or longitudinal, with an enhancement of the detection sensitivity in the case of whispering-gallery modes. It is believed that such a study paves the way to the definition of original noninvasive infrared sensors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys.-Usp 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  3. N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
    [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  5. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
    [CrossRef]
  6. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
    [CrossRef]
  7. C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
    [CrossRef]
  8. M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
    [CrossRef]
  9. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
    [CrossRef]
  10. Q. Wu, J. M. Gibbons, and W. Park, “Graded negative index lens by photonic crystals,” Opt. Express 16, 16941–16949 (2008).
    [CrossRef]
  11. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
    [CrossRef]
  12. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006).
    [CrossRef]
  13. Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Muralowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15, 1286–1291 (2007).
    [CrossRef]
  14. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
    [CrossRef]
  15. N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
    [CrossRef]
  16. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
    [CrossRef]
  17. B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996(2009).
    [CrossRef]
  18. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
    [CrossRef]
  19. D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
    [CrossRef]
  20. Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B 5, S553–S556 (2003).
    [CrossRef]
  21. J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
    [CrossRef]
  22. J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
    [CrossRef]
  23. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403(2002).
    [CrossRef]
  24. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?,” J. Opt. Soc. Am. A 21, 122–131 (2004).
    [CrossRef]
  25. A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” SSP 121–123, 1065–1068 (2007).
    [CrossRef]
  26. G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
    [CrossRef]
  27. G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
    [CrossRef]
  28. M. Hofman, D. Lippens, and O. Vanbésien, “Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm,” Appl. Opt. 49, 5806–5813 (2010).
    [CrossRef]
  29. N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
    [CrossRef]
  30. W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
    [CrossRef]
  31. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
    [CrossRef]
  32. G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
    [CrossRef]
  33. X. Pan, “Tomographic image reconstruction,” in Proceedings of the 41st annual meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).
  34. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed.(Academic, 2010).

2010 (4)

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

M. Hofman, D. Lippens, and O. Vanbésien, “Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm,” Appl. Opt. 49, 5806–5813 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

2009 (2)

2008 (4)

Q. Wu, J. M. Gibbons, and W. Park, “Graded negative index lens by photonic crystals,” Opt. Express 16, 16941–16949 (2008).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

2007 (4)

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” SSP 121–123, 1065–1068 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Muralowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15, 1286–1291 (2007).
[CrossRef]

2006 (6)

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

2005 (3)

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

2004 (2)

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?,” J. Opt. Soc. Am. A 21, 122–131 (2004).
[CrossRef]

2003 (2)

Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B 5, S553–S556 (2003).
[CrossRef]

J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

2002 (2)

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403(2002).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys.-Usp 10, 509–514 (1968).
[CrossRef]

Anand, S.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Baba, T.

Banyal, R. K.

Basov, D. N.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Ben-Aryeh, Y.

Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B 5, S553–S556 (2003).
[CrossRef]

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996(2009).
[CrossRef]

Cluzel, B.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

Croënne, C.

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

de Fornel, F.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

Decoopman, T.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

Dokmeci, M. R.

Dong, X. T.

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef]

Driscoll, T.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Dumas, C.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

Efros, A. L.

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” SSP 121–123, 1065–1068 (2007).
[CrossRef]

Engheta, N.

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

Enoch, S.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?,” J. Opt. Soc. Am. A 21, 122–131 (2004).
[CrossRef]

Eom, K. S.

Fabre, N.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Fang, J.

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

Fasquel, S.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Foteinopoulou, S.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

François, M.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Gaillot, D. P.

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403(2002).
[CrossRef]

Gibbons, J. M.

Gralak, B.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

Greegor, M. B.

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

Guven, K.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Herman, G. T.

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed.(Academic, 2010).

Hodson, T. R.

Hofman, M.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

M. Hofman, D. Lippens, and O. Vanbésien, “Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm,” Appl. Opt. 49, 5806–5813 (2010).
[CrossRef]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996(2009).
[CrossRef]

Kroll, N.

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef]

Lalouat, L.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

Legrand, C.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Li, C.

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” SSP 121–123, 1065–1068 (2007).
[CrossRef]

Lin, C.

Lippens, D.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

M. Hofman, D. Lippens, and O. Vanbésien, “Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm,” Appl. Opt. 49, 5806–5813 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996(2009).
[CrossRef]

Lu, Z.

Matsumoto, T.

Maystre, D.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?,” J. Opt. Soc. Am. A 21, 122–131 (2004).
[CrossRef]

Mélique, X.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

Miao, B.

Moussa, R.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Muller, M.

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Muralowski, J. A.

Nemat-Masser, S.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Nielsen, J. A.

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403(2002).
[CrossRef]

Ozbay, E.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Pan, X.

X. Pan, “Tomographic image reconstruction,” in Proceedings of the 41st annual meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).

Parazzoli, C. G.

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Park, W.

Q. Wu, J. M. Gibbons, and W. Park, “Graded negative index lens by photonic crystals,” Opt. Express 16, 16941–16949 (2008).
[CrossRef]

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Perry, C. H.

Pierre, R.

Prather, D. W.

Qiu, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Ramakrishna, S. A.

J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

Rye, P. M.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Scherrer, G.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

Schonbrun, E.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Selvarasah, S.

Smigaj, W.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
[CrossRef]

Smith, D. R.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef]

Soukoulis, C. M.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996(2009).
[CrossRef]

Starr, A. F.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

Summers, C. J.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Talneau, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Tanielan, M. H.

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Tayeb, G.

W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

Thompson, M. A.

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

Thylen, L.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

Tuttle, G.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Vanbésien, O.

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

M. Hofman, D. Lippens, and O. Vanbésien, “Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm,” Appl. Opt. 49, 5806–5813 (2010).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys.-Usp 10, 509–514 (1968).
[CrossRef]

Wang, G.

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007).
[CrossRef]

Wu, Q.

Yamashita, T.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Zhang, L.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010).
[CrossRef]

M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005).
[CrossRef]

J. Opt. B (1)

Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B 5, S553–S556 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (2)

J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002).
[CrossRef]

J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003).
[CrossRef]

Opt. Commun. (2)

N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008).
[CrossRef]

M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Optoelectron. Rev. (1)

N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006).
[CrossRef]

Phys. Rev. B (3)

C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008).
[CrossRef]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403(2002).
[CrossRef]

D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[CrossRef]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Sov. Phys.-Usp (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys.-Usp 10, 509–514 (1968).
[CrossRef]

SSP (1)

A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” SSP 121–123, 1065–1068 (2007).
[CrossRef]

Other (2)

X. Pan, “Tomographic image reconstruction,” in Proceedings of the 41st annual meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed.(Academic, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Reflective detecting principle including an n=1 photonic crystal flat lens (normal incidence); (b) example of imaging for a metallic target at 1.55 μm.

Fig. 2.
Fig. 2.

Flat lens characteristics: (a) TE and TM band structures of the 2D dielectric photonic crystal; (b) equifrequency contours of the second TE passband; (c) 2D FDTD simulation of the flat lens double-focusing experiment by negative refraction (n=1 at λ=1.55μm); (d) summary of characteristic dimensions and performances of the flat lens (including interface matching using ARCs).

Fig. 3.
Fig. 3.

2D FDTD simulation scheme for parametric analysis of dielectric target detection.

Fig. 4.
Fig. 4.

E-field map extraction in front of the lens in the recording zone (from left to right) for (1) the setup without the lens, (2) the setup without the target, and (3) the full setup with a 1 μm diameter target of index equal to 3.25.

Fig. 5.
Fig. 5.

Parametric study for a 1 μm diameter target for various indexes: (a) position of maximum field at x=0μm; (b) E-field maps in the recording zone; (c) maximum Ey-field amplitude as a function of index [full line: using position found in (a); dashed line: at z=0.4μm]; (d) E-field maps within the target for particular indexes [corresponding to the maximums and minimums of (c)].

Fig. 6.
Fig. 6.

Detecting capability as a function of target diameter for three index values: n=1.5, n=2, n=3.25.

Metrics