Abstract

The purpose of this paper is to numerically investigate dense wavelength division multiplexing (DWDM) transmission between a chaotic optical secure channel and a conventional fiber-optic channel. A 2.5Gbits/s secure message masked by the chaotic optical secure channel and a 10Gbits/s message sequence carried by the conventional fiber-optic channel can be realized simultaneously when the channel spacing is 0.8 nm. The results show that the Q-factors of the recovered messages can be increased significantly when the launched optical power is reduced appropriately. The deterioration of the quality of communication caused by fiber dispersion can be compensated noticeably on the condition that the symmetrical dispersion compensation scheme is adopted. In addition, the secure message is masked by chaos shift keying in the chaotic optical secure channel. The multiplexing distance between the chaotic optical secure channel and the conventional fiber-optic channel is up to 500 km.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996).
    [CrossRef]
  2. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
    [CrossRef]
  3. S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett. 24, 1200–1202 (1999).
    [CrossRef]
  4. S. Tang and J. M. Liu, “Message encoding-decoding at 2.5  Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26, 1843–1845 (2001).
    [CrossRef]
  5. K. Kusumoto and J. Ohtsubo, “1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers,” Opt. Lett. 27, 989–991 (2002).
    [CrossRef]
  6. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
    [CrossRef]
  7. F. Y. Lin and M. C. Tsai, “Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers,” Opt. Express 15, 302–311 (2007).
    [CrossRef]
  8. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
    [CrossRef]
  9. Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010).
    [CrossRef]
  10. H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
    [CrossRef]
  11. K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
    [CrossRef]
  12. N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
    [CrossRef]
  13. N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
    [CrossRef]
  14. K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
    [CrossRef]
  15. A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
    [CrossRef]
  16. A. Uchida, S. Kinugawa, T. Matsuura, and S. Yoshimori, “Dual synchronization of chaos in microchip lasers,” Opt. Lett. 28, 19–21 (2003).
    [CrossRef]
  17. R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32, 403–405 (2007).
    [CrossRef]
  18. A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
    [CrossRef]
  19. A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32, 2134–2136 (2007).
    [CrossRef]
  20. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010).
    [CrossRef]
  21. R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
    [CrossRef]
  22. R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
    [CrossRef]
  23. J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17, 6357–6367 (2009).
    [CrossRef]
  24. A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28, 3107–3114 (2010).
    [CrossRef]
  25. Q. Zhao, and H. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
    [CrossRef]
  26. J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
    [CrossRef]
  27. J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010).
    [CrossRef]
  28. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
    [CrossRef]
  29. K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol. 29, 3210–3222 (2011).
    [CrossRef]
  30. D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, “Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,” J. Lightwave Technol. 22, 2256–2263 (2004).
    [CrossRef]
  31. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic, 2007), Chap. 7, pp. 226–273.
  33. X. M. Chen, J. X. Ma, and Y. T. Yang, “Design of 50 G nonpolarizing dense wavelength division multiplexer angle-tuning bandpass filter,” Appl. Opt. 49, 5271–5275 (2010).
    [CrossRef]
  34. H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17, 19536–19543 (2009).
    [CrossRef]

2012 (3)

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

Q. Zhao, and H. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[CrossRef]

2011 (6)

R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[CrossRef]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol. 29, 3210–3222 (2011).
[CrossRef]

H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
[CrossRef]

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

2010 (6)

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[CrossRef]

Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010).
[CrossRef]

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28, 3107–3114 (2010).
[CrossRef]

J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010).
[CrossRef]

X. M. Chen, J. X. Ma, and Y. T. Yang, “Design of 50 G nonpolarizing dense wavelength division multiplexer angle-tuning bandpass filter,” Appl. Opt. 49, 5271–5275 (2010).
[CrossRef]

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010).
[CrossRef]

2009 (3)

2008 (2)

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[CrossRef]

2007 (3)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

2001 (2)

S. Tang and J. M. Liu, “Message encoding-decoding at 2.5  Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26, 1843–1845 (2001).
[CrossRef]

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

1999 (1)

1998 (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

1996 (1)

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic, 2007), Chap. 7, pp. 226–273.

Aida, H.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Aoyama, H.

H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
[CrossRef]

Araki, S.

Argyris, A.

Behringer, R. E.

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

Besse, P. A.

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

Bogris, A.

Chen, X. M.

Chlouverakis, K.

A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[CrossRef]

Chlouverakis, K. E.

Colet, P.

R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996).
[CrossRef]

D’Huys, O.

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

Danckaert, J.

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

Davis, P.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

Deligiannidis, S.

J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010).
[CrossRef]

Dudley, J.

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

Fischer, I.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32, 403–405 (2007).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Flunkert, V.

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

García-Fernández, P.

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996).
[CrossRef]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Grivas, E.

Hamacher, M.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[CrossRef]

A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[CrossRef]

Harasawa, K.

Harayama, T.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

He, H. C.

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

Hicke, K.

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

Hizanidis, J.

J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010).
[CrossRef]

Hong, Y.

Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010).
[CrossRef]

Inoue, K.

Jacquot, M.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010).
[CrossRef]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

Jiang, N.

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Joyner, C. H.

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

Kanakidis, D.

Kida, T.

Kinugawa, S.

Kitayama, K.-I.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Kusumoto, K.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Larger, L.

R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[CrossRef]

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010).
[CrossRef]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Lavrov, R.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010).
[CrossRef]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

Lee, M. W.

Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010).
[CrossRef]

Leuthold, J.

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

Li, N.

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Lin, F. Y.

Liu, J. M.

Luo, B.

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Ma, J. X.

Matsuura, T.

Mikkelsen, B.

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

Mirasso, C. R.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32, 403–405 (2007).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996).
[CrossRef]

Modeste Nguimdo, R.

R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[CrossRef]

Morikatsu, S.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

Muramatsu, J.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

Nagasako, Y.

Ohtsubo, J.

H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
[CrossRef]

K. Kusumoto and J. Ohtsubo, “1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers,” Opt. Lett. 27, 989–991 (2002).
[CrossRef]

Okumura, H.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17, 19536–19543 (2009).
[CrossRef]

Oowada, I.

Pan, W.

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Peil, M.

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

Pesquera, L.

R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Raybon, G.

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

Rosso, O. A.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Sasaki, M.

Scho¨ll, E.

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

Shogenji, R.

H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
[CrossRef]

Shore, K. A.

Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett. 24, 1200–1202 (1999).
[CrossRef]

Sivaprakasam, S.

Someya, H.

Soriano, M. C.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

Syvridis, D.

J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010).
[CrossRef]

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28, 3107–3114 (2010).
[CrossRef]

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[CrossRef]

A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[CrossRef]

A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32, 2134–2136 (2007).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, “Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,” J. Lightwave Technol. 22, 2256–2263 (2004).
[CrossRef]

Takada, A.

Tang, S.

Tang, Y.

Tomida, S.

H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
[CrossRef]

Tomita, A.

Tsai, M. C.

Tsubokawa, M.

Uchida, A.

Udaltsov, V.

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Vicente, R.

Wang, A. B.

J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17, 6357–6367 (2009).
[CrossRef]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

Wang, J. F.

Wang, Y. C.

J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17, 6357–6367 (2009).
[CrossRef]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

Xiang, S.

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Xu, M.

Yan, L.

N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012).
[CrossRef]

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Yang, L.

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Yang, Y. T.

Yin, H.

Q. Zhao, and H. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[CrossRef]

Yoshimori, S.

Yoshimura, K.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

Zhang, J. Z.

Zhang, Q.

Zhao, Q.

Q. Zhao, and H. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[CrossRef]

Zheng, D.

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

Zunino, L.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (5)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010).
[CrossRef]

J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010).
[CrossRef]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[CrossRef]

Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996).
[CrossRef]

J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Opt. Commun. (2)

H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011).
[CrossRef]

Q. Zhao, and H. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. E (2)

K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011).
[CrossRef]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[CrossRef]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012).
[CrossRef]

A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[CrossRef]

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic, 2007), Chap. 7, pp. 226–273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of DWDM transmission between chaotic optical secure channel and conventional fiber-optic channel. MOD, modulator; VOA, variable optical attenuator; OC, optical coupler; MUX, multiplexer; DCF, dispersion-compensating fiber; NZ-DSF, nonzero dispersion-shifted fiber; EDFA, erbium-doped fiber amplifier; DMUX, demultiplexer; PD, photodetector.

Fig. 2.
Fig. 2.

Optical spectra of transmitters. Chaotic carrier with central wavelength located at 1550 nm (left); conventional carrier with central wavelength located at 1550.8 nm (right).

Fig. 3.
Fig. 3.

Conventional fiber-optic channel for a 100 km transmission distance. (a) The 10Gbits/s pseudo-random sequence; (b) the recovered message after filtering.

Fig. 5.
Fig. 5.

Eye diagrams of the recovered messages. (a) 10Gbits/s message; (b) 2.5Gbits/s message.

Fig. 4.
Fig. 4.

Chaotic optical secure channel for 100 km transmission distance. (a) Chaotic carrier without message; (b) chaotic carrier masking message; (c) 2.5Gbits/s pseudo-random sequence; (d) the recovered message after filtering.

Fig. 6.
Fig. 6.

CC as a function of fiber length.

Fig. 7.
Fig. 7.

Effect of fiber length on the Q-factor with the amplitude of the launched optical power attenuated to 1/10, 1/3, and 1 (the original case without attenuation). (a) Chaotic optical secure channel; (b) conventional fiber-optic channel.

Fig. 8.
Fig. 8.

Eye diagrams of the recovered messages after 500 km transmission in optical fiber. (a) Conventional fiber-optic channel, a=1; (b) conventional fiber-optic channel, a=1/10; (c) chaotic optical secure channel, a=1; (d) chaotic optical secure channel, a=1/10.

Tables (1)

Tables Icon

Table 1. Parameter Values Used in the Numerical Simulation

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dET,R(t)dt=12(1+iψ)[G[NT,R(t)N0]1+ϵ|ET,R(t)|21τP]ET,R(t)+kT,RET,R(tτ)exp(iωτ)+kinjEext(t),
dNT,R(t)dt=IT,RqV1τnNT,R(t)G[NT,R(t)N0]1+ϵ|ET,R(t)|2|ET,R(t)|2,
kT,R=1τin(1r02)rT,Rr0,
kinj=1τin(1r02)rinjr0,
iE1z=i2αE1+β222E1t2γ(|E1|2+2|E2|2)E1,
iE2z=i2αE2+β222E2t2γ(|E2|2+2|E1|2)E2,
CC=[PT(t)PT(t)][PR(t)PR(t)]|[PT(t)PT(t)]|2|[PR(t)PR(t)]|2,
Q=P1P0σ1+σ0,

Metrics