Abstract

We theoretically propose phase matched terahertz (THz)-wave generation via degenerate four-wave mixing (FWM) in a fiber optical parametric oscillator (FOPO) with our newly designed photonic crystal fiber (PCF). Perfect phase matching is realized when we locate the pump wavelength in the normal group-velocity dispersion (GVD) regime. The generated THz-wave can be tuned from 4.7578 to 5.9015 THz by varying the pump wavelength. Moreover, peak power of 27.38 W at 5.9015 THz with conversion efficiency of 1.37% is realized when the pump peak power of 2000 W is at 4.675 μm in our FOPO.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652–17660 (2007).
    [CrossRef]
  2. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008).
    [CrossRef]
  3. J. D. Kraus, Radio Astronomy (Cygnus-Quasar, 1986).
  4. S. Jae Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17, 3469–3475 (2009).
    [CrossRef]
  5. H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19, 21552–21562 (2011).
    [CrossRef]
  6. N. Laman, S. Sree Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008).
    [CrossRef]
  7. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [CrossRef]
  8. K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011).
    [CrossRef]
  9. K. Miyamotol, S. Ohnol, M. Fujiwara, H. Minamide, H. Hashimoto, and H. Ito, “Optimized terahertz-wave generation using BNA-DFG,” Opt. Express 17, 14832–14838 (2009).
    [CrossRef]
  10. B. Sun, S. Li, J. Liu, E. Li, and J. Yao, “Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity,” Opt. Lett. 36, 1845–1847 (2011).
    [CrossRef]
  11. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31, 957–959 (2006).
    [CrossRef]
  12. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
    [CrossRef]
  13. K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32, 2990–2992 (2007).
    [CrossRef]
  14. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439–1441 (2002).
    [CrossRef]
  15. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30, 762–764 (2005).
    [CrossRef]
  16. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “High-conversion-efficiency widely-tunable allfiber optical parametric oscillator,” Opt. Express 15, 2947–2952 (2007).
    [CrossRef]
  17. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Light. Technol. 26, 2184–2191 (2008).
    [CrossRef]
  18. E. D. Palik, Optical Constants of Solids (Academic, 1985).
  19. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [CrossRef]
  20. J. D. Harvey, R. Leonhardt, S. Coen, and G. K. L. Wong, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
    [CrossRef]
  21. J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012).
    [CrossRef]
  22. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [CrossRef]
  23. J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
    [CrossRef]
  24. Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
    [CrossRef]
  25. E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
    [CrossRef]
  26. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Lett. 90, 191104 (2007).
    [CrossRef]
  27. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
    [CrossRef]
  28. http://www.nature.com/nphoton/journal/v4/n8/full/nphoton.2010.173.html .
  29. E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
    [CrossRef]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

2012

2011

H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19, 21552–21562 (2011).
[CrossRef]

K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011).
[CrossRef]

B. Sun, S. Li, J. Liu, E. Li, and J. Yao, “Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity,” Opt. Lett. 36, 1845–1847 (2011).
[CrossRef]

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

2010

2009

2008

J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Light. Technol. 26, 2184–2191 (2008).
[CrossRef]

N. Laman, S. Sree Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008).
[CrossRef]

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008).
[CrossRef]

2007

2006

Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31, 957–959 (2006).
[CrossRef]

2005

2003

2002

Agrawal, G. P.

Avetisyan, Y.

Boyraz, O.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Lett. 90, 191104 (2007).
[CrossRef]

Brückner, C.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Chen, A. Y. H.

Chen, H.

Chen, T.-H.

Chuang, E. Y.

Coen, S.

Deng, Y.

Ding, Y. J.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Fan, D.

Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
[CrossRef]

Fernelius, N.

Foster, M. A.

Fu, S.-C.

Fujiwara, M.

Gaeta, A. L.

Gao, S.

Grischkowsky, D.

Haam, S.

Harvey, J. D.

Hashimoto, H.

Ho, L.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008).
[CrossRef]

Huang, N.

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012).
[CrossRef]

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

Huang, Y.

Huang, Y.-Y.

Huh, Y.-M.

Hurlbut, W. C.

K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011).
[CrossRef]

Hwang, Y.-J.

Ito, H.

Jae Oh, S.

Kalyoncu, S. K.

Kang, J.

Kawase, K.

K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32, 2990–2992 (2007).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

Kazovsky, L. G.

Knox, W. H.

Kozlov, V. G.

K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011).
[CrossRef]

Kraus, J. D.

J. D. Kraus, Radio Astronomy (Cygnus-Quasar, 1986).

Kuo, C.-C.

Laman, N.

Lee, W.-J.

Leonhardt, R.

Li, E.

Li, S.

Li, Y.

Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, H.

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012).
[CrossRef]

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

Liu, J.

Long, H.

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

Lu, D.

Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
[CrossRef]

Lu, F.

Lu, J.-T.

Maeng, I.

Marhic, M. E.

Matthäus, G.

Melinger, J. S.

Minamide, H.

Miyamotol, K.

Müller, R.

Murdoch, S. G.

Nolte, S.

Notni, G.

Ohnol, S.

Palik, E. D.

E. D. Palik, Optical Constants of Solids (Academic, 1985).

Pepper, M.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008).
[CrossRef]

Pradarutti, B.

Qian, F.

Qian, L.

Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
[CrossRef]

Riehemann, S.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Lett. 90, 191104 (2007).
[CrossRef]

Salem, R.

Sasaki, Y.

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31, 957–959 (2006).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

Sharping, J. E.

J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Light. Technol. 26, 2184–2191 (2008).
[CrossRef]

Shi, W.

Son, J.-H.

Song, Q.

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Sree Harsha, S.

Suh, J.-S.

Suizu, K.

Sun, B.

Sun, C.-K.

Sun, Q.

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012).
[CrossRef]

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

Suzuki, Y.

Taday, P.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008).
[CrossRef]

Tien, E.-K.

Tsai, Y.-F.

Tseng, T.-F.

Tünnermann, A.

Turner, A. C.

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Lett. 90, 191104 (2007).
[CrossRef]

Vodopyanov, K.

Vodopyanov, K. L.

K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011).
[CrossRef]

Wen, J.

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012).
[CrossRef]

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

Wong, G. K. L.

Wong, K. K.-Y.

Yao, J.

Yuri, A.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

Zhao, W.

Appl. Lett.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Lett. 90, 191104 (2007).
[CrossRef]

Appl. Phys. Lett.

K. L. Vodopyanov, W. C. Hurlbut, and V. G. Kozlov, “Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing,” Appl. Phys. Lett. 99, 041104 (2011).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002).
[CrossRef]

J. Light. Technol.

J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Light. Technol. 26, 2184–2191 (2008).
[CrossRef]

J. Opt. A

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[CrossRef]

Nat. Photon.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008).
[CrossRef]

Opt. Commun.

Y. Li, L. Qian, D. Lu, and D. Fan, “Widely tunable femtosecond fiber optical parametric oscillator,” Opt. Commun. 267, 491–497 (2006).
[CrossRef]

Opt. Eng.

J. Wen, H. Liu, N. Huang, Q. Sun, and H. Long, “Ultrawide tunable femtosecond optical parametric oscillator around 1.5 μm based on high nonlinear photonic crystal fiber,” Opt. Eng. 50, 085001 (2011).
[CrossRef]

Opt. Express

E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
[CrossRef]

E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010).
[CrossRef]

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguides,” Opt. Express 20, 3490–3498 (2012).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[CrossRef]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652–17660 (2007).
[CrossRef]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “High-conversion-efficiency widely-tunable allfiber optical parametric oscillator,” Opt. Express 15, 2947–2952 (2007).
[CrossRef]

K. Miyamotol, S. Ohnol, M. Fujiwara, H. Minamide, H. Hashimoto, and H. Ito, “Optimized terahertz-wave generation using BNA-DFG,” Opt. Express 17, 14832–14838 (2009).
[CrossRef]

S. Jae Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17, 3469–3475 (2009).
[CrossRef]

H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19, 21552–21562 (2011).
[CrossRef]

N. Laman, S. Sree Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008).
[CrossRef]

Opt. Lett.

Other

http://www.nature.com/nphoton/journal/v4/n8/full/nphoton.2010.173.html .

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

E. D. Palik, Optical Constants of Solids (Academic, 1985).

J. D. Kraus, Radio Astronomy (Cygnus-Quasar, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Silicon triangular PCF.

Fig. 2.
Fig. 2.

(a) Effective mode areas and (b) energy of the THz-wave confined in the core areas of the PCF as a function of wavelength with different air-hole diameters.

Fig. 3.
Fig. 3.

Mode profiles of (a) 2.4 μm; (b) 4.67 μm; and (c) 50 μm in silicon triangular PCF with d=4.8μm; (d) shows the mode profile of 50 μm in a conventional single mode fiber with core diameter d=4μm.

Fig. 4.
Fig. 4.

(a) GVD and fourth-order dispersion (b) sixth-order dispersion and Aeff as a function of pump wavelength.

Fig. 5.
Fig. 5.

Parametric gain of signal and THz-waves when phase matching condition is achieved.

Fig. 6.
Fig. 6.

Signal and the related THz wavelength depend on pump wavelength for collinear phase matched THz-wave generation.

Fig. 7.
Fig. 7.

Diagram of THz-wave generation via degenerate FWM in silicon PCF-OPO (the red, blue, and brown lines represent the pump, THz, and signal waves, respectively).

Fig. 8.
Fig. 8.

Output spectrum of the generated THz pulse; ν0 is the central frequency of the generated THz pulse.

Fig. 9.
Fig. 9.

Pump, signal, and THz pulse peak power when the maximum parametric gain is achieved.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δk=ΔkL+ΔkNL,
ΔkL=β2(Δω)2+112β4(Δω)4+1360β6(Δω)6,
Gs=1+[γPgsinh(gL)]2,
g=[γPΔkL(ΔkL2)2]12
2γP+β2(Δω)2+112β4(Δω)4+1360β6(Δω)6=0.
Apz=αp2Ap+iγp|Ap|2Ap+2i(γps|As|2+γpt|At|2)Ap+2iγpAsAtAp*exp(iΔβz),Asz=αs2As+iγs|As|2As+2i(γsp|Ap|2+γst|At|2)As+iγsAt*Ap2exp(iΔβz),Atz=αt2At+iγt|At|2At+2i(γts|As|2+γtp|Ap|2)At+iγtAp2As*exp(iΔβz),
η=PTHzout/Ppumpin.

Metrics