Abstract

We report the fabrication and analysis of optical waveguides in Yb:YAG crystals using either proton or carbon ion implantation. Planar waveguides were obtained by implanting the whole surface of the crystals. Channel waveguides were defined using an electroformed mask with apertures of 10, 15, and 20 micrometers in width. The waveguiding properties of the structures were analyzed, showing good light confinement based on the transversal mode distribution and optical transmission measurements. The spectroscopic properties of the Yb ions in the YAG host are preserved after the implantation process, which demonstrates the potential of this technique for tailoring microcomponents for integrated optics applications. In particular, the Yb:YAG waveguides have the potential to operate as miniature lasers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
  2. D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
    [CrossRef]
  3. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513–8520 (2007).
    [CrossRef]
  4. J. F. Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).
    [CrossRef]
  5. P. J. Chandler, and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
    [CrossRef]
  6. L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
    [CrossRef]
  7. G. V. Vázquez, “Advances in quality of optical waveguides in Nd:YAG and LiNbO3,” PhD Thesis (University of Sussex, 2000).
  8. G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
    [CrossRef]
  9. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
    [CrossRef]
  10. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).
  11. M. A. López-Urquieta, E. Flores-Romero, G. V. Vázquez, and H. Márquez, “Characterization of channel waveguides fabricated by high dose proton implantation in Nd:YAG,” Proc. SPIE 8120, 81201H (2011).
    [CrossRef]
  12. V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
    [CrossRef]
  13. Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
    [CrossRef]

2011 (1)

M. A. López-Urquieta, E. Flores-Romero, G. V. Vázquez, and H. Márquez, “Characterization of channel waveguides fabricated by high dose proton implantation in Nd:YAG,” Proc. SPIE 8120, 81201H (2011).
[CrossRef]

2008 (1)

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

2007 (1)

2004 (2)

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef]

2003 (1)

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

1999 (1)

J. F. Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).
[CrossRef]

1993 (1)

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

1991 (1)

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

1986 (1)

P. J. Chandler, and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Camy, P.

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Cantelar, E.

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

Chandler, P. J.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

P. J. Chandler, and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).

Domenech, M.

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

Dou, C.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Doualan, J. L.

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Field, S. J.

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

Flores-Romero, E.

Hanna, D. C.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

Hao, Q.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Jones, J. K.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

Lama, F. L.

P. J. Chandler, and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Large, A. C.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

Li, W.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Lifante, G.

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

López-Urquieta, M. A.

M. A. López-Urquieta, E. Flores-Romero, G. V. Vázquez, and H. Márquez, “Characterization of channel waveguides fabricated by high dose proton implantation in Nd:YAG,” Proc. SPIE 8120, 81201H (2011).
[CrossRef]

Lu, W.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Márquez, H.

M. A. López-Urquieta, E. Flores-Romero, G. V. Vázquez, and H. Márquez, “Characterization of channel waveguides fabricated by high dose proton implantation in Nd:YAG,” Proc. SPIE 8120, 81201H (2011).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513–8520 (2007).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef]

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

Menard, V.

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Moncorge, R.

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Najafi, S. I.

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

Petit, V.

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Rangel, R.

Rangel-Rojo, R.

Rickards, J.

Rodman, M. J.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

Shepherd, D. P.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

Townsend, P. D.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).

Trejo-Luna, R.

Tropper, A. C.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

Vázquez, G. V.

M. A. López-Urquieta, E. Flores-Romero, G. V. Vázquez, and H. Márquez, “Characterization of channel waveguides fabricated by high dose proton implantation in Nd:YAG,” Proc. SPIE 8120, 81201H (2011).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513–8520 (2007).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef]

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

G. V. Vázquez, “Advances in quality of optical waveguides in Nd:YAG and LiNbO3,” PhD Thesis (University of Sussex, 2000).

Yang, Q.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Zeng, H.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Zhang, L.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).

Zhou, H.

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).
[CrossRef]

Appl. Phys. B (1)

V. Petit, J. L. Doualan, P. Camy, V. Menard, and R. Moncorge, “CW and tunable laser operation of Yb3+ doped CaF2, ” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Hao, W. Li, H. Zeng, Q. Yang, C. Dou, H. Zhou, and W. Lu, “Low-threshold and broadly tunable lasers of Yb3+− doped yttrium lanthanum oxide ceramic,” Appl. Phys. Lett. 92, 211106 (2008).
[CrossRef]

J. Appl. Phys. (2)

J. F. Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, “Characterization of ion implanted waveguides in Nd:YAG,” J. Appl. Phys. 69, 3440–3446 (1991).
[CrossRef]

Opt. Acta (1)

P. J. Chandler, and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Opt. Commun. (2)

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi-three level 1.03 μm laser operation of a planar ion-implanted Yb:YAG waveguide,” Opt. Commun. 99, 211–215 (1993).
[CrossRef]

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar, and M. Domenech, “Optical waveguides in Nd:YAG by proton implantation,” Opt. Commun. 218, 141–146 (2003).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

M. A. López-Urquieta, E. Flores-Romero, G. V. Vázquez, and H. Márquez, “Characterization of channel waveguides fabricated by high dose proton implantation in Nd:YAG,” Proc. SPIE 8120, 81201H (2011).
[CrossRef]

Other (3)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

G. V. Vázquez, “Advances in quality of optical waveguides in Nd:YAG and LiNbO3,” PhD Thesis (University of Sussex, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup used to measure waveguide transmission properties.

Fig. 2.
Fig. 2.

Experimental setup used for the luminescence measurements.

Fig. 3.
Fig. 3.

Microscope images of (a) the planar waveguide by proton implantation and (b) channels by carbon implantation: 10 μm (upper), 15 μm (middle), and 20 μm (lower).

Fig. 4.
Fig. 4.

Transversal mode distribution in the channel waveguides; (a) measured at 633 nm and (b) calculated at 1030 nm.

Fig. 5.
Fig. 5.

Refractive index profiles of the planar waveguides; (a) proton-implanted waveguide, and (b) carbon-implanted waveguide.

Fig. 6.
Fig. 6.

Comparison of luminescence spectra of the bulk crystal (dashed line) vs. two waveguides (solid line); (a) planar waveguide by carbon implantation and (b) channel by proton implantation.

Tables (2)

Tables Icon

Table 1. Implantation Parameters Used to Fabricate the Optical Waveguidesa

Tables Icon

Table 2. Propagation Losses Measured in the Planar and Channel Waveguides

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

=10Llog(P0cTl2Ts2P1)dB/cm

Metrics