Abstract

Determination of actual parameters of manufactured optical coatings (reverse engineering of optical coatings) provides feedback to the design-production chain and thus plays an important role in raising the quality of optical coatings production. In this paper, the reliability of reverse engineering results obtained using different types of experimental data is investigated. Considered experimental data include offline normal incidence transmittance data, offline ellipsometric data, and online transmittance monitoring data recorded during depositions of all coating layers. Experimental data are obtained for special test quarter-wave mirrors with intentional errors in some layers. These mirrors were produced by a well-calibrated magnetron-sputtering process. The intentional errors are several times higher than estimated errors of layer thickness monitoring, and the reliability of their detection is used as a measure of reliability of reverse engineering results. It is demonstrated that the most reliable results are provided by online transmittance data.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.
  2. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
    [CrossRef]
  3. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
  4. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
    [CrossRef]
  5. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).
  6. V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Goertz, C. Rickers, C. Polenzky, and U. Richter, “Optical characterization of hybrid antireflective coatings using spectrophotometric and ellipsometric measurements,” Appl. Opt. 46, 6084–6091 (2007).
    [CrossRef]
  7. R. Andrade, E. G. Birgin, I. Chambouleyron, J. M. Martinez, and S. D. Ventura, “Estimation of the thickness and the optical parameters of several stacked thin films using optimization,” Appl. Opt. 47, 5208–5220 (2008).
    [CrossRef]
  8. A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.
  9. A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
    [CrossRef]
  10. J. Woollam, WVASE Manual. Guide to Using WVASE32(WexTech Systems Inc., 1996).
  11. H. Fujuwara, Specroscopic Ellipsometry. Principles and Applications (Wiley, 2007).
  12. A. V. Tikhonravov, and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com .
  13. A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
    [CrossRef]
  14. T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464 (2011).
    [CrossRef]
  15. A. V. Tikhonravov, and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
    [CrossRef]
  16. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
    [CrossRef]
  17. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of piad deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  18. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007).
    [CrossRef]
  19. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
    [CrossRef]
  20. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
    [CrossRef]
  21. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
    [CrossRef]
  22. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
    [CrossRef]
  23. V. Pervak, I. Ahmad, J. Fülop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses.” Opt. Express 17, 2207–2217 (2009).
    [CrossRef]
  24. V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
    [CrossRef]
  25. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
    [CrossRef]
  26. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
    [CrossRef]
  27. Quartz Glass for Optics: Data and Properties, http://heraeus-quarzglas.com .
  28. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85(2011).
    [CrossRef]
  29. D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
    [CrossRef]
  30. M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
    [CrossRef]
  31. A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
    [CrossRef]
  32. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, and S. Thony, “Reverse engineering of fabricated coatings using off-line and on-line photometric data,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WA3.

2012 (1)

2011 (6)

2010 (1)

2009 (1)

2008 (5)

2007 (4)

2006 (1)

2005 (1)

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

2004 (1)

A. V. Tikhonravov, and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

2003 (1)

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

2002 (1)

1996 (1)

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Ahmad, I.

Amotchkina, T.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

Amotchkina, T. V.

Andrade, R.

Apolonski, A.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
[CrossRef]

A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.

Arsenin, V. Y.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

Badoil, B.

Birgin, E. G.

Bosch, S.

Cathelinaud, M.

Chambouleyron, I.

DeBell, G.

Duparré, A.

Durand, O.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

Ehlers, H.

Ferré-Borrull, J.

Francis, R.

Friedrich, K.

Fujuwara, H.

H. Fujuwara, Specroscopic Ellipsometry. Principles and Applications (Wiley, 2007).

Fülop, J.

Goertz, B.

Grilli, M. L.

Gross, T.

Günster, S.

Hoffmann, K.

Hrdina, J.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Janicki, V.

Justice, J.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

Kaiser, N.

Kiriakidis, G.

Kochikov, I.

J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, and S. Thony, “Reverse engineering of fabricated coatings using off-line and on-line photometric data,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WA3.

Krausz, F.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.

Lappschies, M.

Lemarchand, F.

Lequime, M.

Martinez, J. M.

Masetti, E.

Modreanu, M.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

O’Connell, D.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

Oliver, J.

J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.

Peiró, F.

Pervak, V.

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85(2011).
[CrossRef]

V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

V. Pervak, I. Ahmad, J. Fülop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses.” Opt. Express 17, 2207–2217 (2009).
[CrossRef]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.

Pistner, J.

Polenzky, C.

Quesnel, E.

Richter, U.

Rickers, C.

Ristau, D.

Sancho-Parramon, J.

Schlichting, S.

Servet, B.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

Smith, D.

J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.

Sobota, J.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Stenzel, O.

Sugita, A.

Sytchkova, A. K.

Teisset, C.

Thony, S.

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, and S. Thony, “Reverse engineering of fabricated coatings using off-line and on-line photometric data,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WA3.

Tikhonov, A. N.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

Tikhonravov, A.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
[CrossRef]

A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.

J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.

Tikhonravov, A. V.

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85(2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

V. Pervak, I. Ahmad, J. Fülop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses.” Opt. Express 17, 2207–2217 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

A. V. Tikhonravov, and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, and S. Thony, “Reverse engineering of fabricated coatings using off-line and on-line photometric data,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WA3.

Trubetskov, M.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.

A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.

Trubetskov, M. K.

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85(2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

V. Pervak, I. Ahmad, J. Fülop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses.” Opt. Express 17, 2207–2217 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
[CrossRef]

A. V. Tikhonravov, and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, and S. Thony, “Reverse engineering of fabricated coatings using off-line and on-line photometric data,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WA3.

Ventura, S. D.

Wilbrandt, S.

Woollam, J.

J. Woollam, WVASE Manual. Guide to Using WVASE32(WexTech Systems Inc., 1996).

Zorc, H.

Appl. Opt. (14)

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Goertz, C. Rickers, C. Polenzky, and U. Richter, “Optical characterization of hybrid antireflective coatings using spectrophotometric and ellipsometric measurements,” Appl. Opt. 46, 6084–6091 (2007).
[CrossRef]

R. Andrade, E. G. Birgin, I. Chambouleyron, J. M. Martinez, and S. D. Ventura, “Estimation of the thickness and the optical parameters of several stacked thin films using optimization,” Appl. Opt. 47, 5208–5220 (2008).
[CrossRef]

T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: 2-material technology versus rugate,” Appl. Opt. 46, 1190–1193 (2007).
[CrossRef]

V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85(2011).
[CrossRef]

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
[CrossRef]

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

Mater. Sci. Eng., B (1)

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of hfo2 thin films,” Mater. Sci. Eng., B 118, 127–131 (2005).
[CrossRef]

Opt. Express (3)

Proc. SPIE (4)

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Günster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of piad deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

A. V. Tikhonravov, and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).

Thin Solid Films (1)

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Other (8)

J. Oliver, A. Tikhonravov, M. Trubetskov, I. Kochikov, and D. Smith, “Real-time characterization and optimization of e-beam evaporated optical coatings,” in Optical Interference Coatings, Technical Digest (Optical Society of America, 2001), paper ME8.

A. Tikhonravov, M. Trubetskov, V. Pervak, F. Krausz, and A. Apolonski, “Design, fabrication and reverse engineering of broad band chirped mirrors,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WB4.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

J. Woollam, WVASE Manual. Guide to Using WVASE32(WexTech Systems Inc., 1996).

H. Fujuwara, Specroscopic Ellipsometry. Principles and Applications (Wiley, 2007).

A. V. Tikhonravov, and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com .

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, and S. Thony, “Reverse engineering of fabricated coatings using off-line and on-line photometric data,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2007), paper WA3.

Quartz Glass for Optics: Data and Properties, http://heraeus-quarzglas.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Refractive indices of Ta2O5 films (left side) and SiO2 films (right side): nominal indices (solid black curve), indices obtained in [28] (dashed gray curve), indices determined in [9] (solid gray curve), and indices obtained from ellipsometric measurement data (dashed black curve).

Fig. 2.
Fig. 2.

Refractive indices of Ta2O5 films (left panel) and SiO2 films (right panel): nominal indices (1—solid blue curve), indices obtained from multiscan measurements related to QWM-2-Glass sample (2—gray curve) and to QWM-4-Glass sample (3—black curve), indices determined from Perkin Elmer measurements related to QWM-2-Suprasil sample (4—red curve) and to QWM-4-Suprasil sample (5—green curve). Curves 3 and 4 are almost undistinguishable at the left panel.

Fig. 3.
Fig. 3.

Black bars present relative errors in layer thicknesses of QWM-2-Glass sample (left panel) and QWM-4-Glass sample (right panel) determined on the basis of multiscan transmittance data. Gray bars show errors imposed on layer thicknesses.

Fig. 4.
Fig. 4.

Black bars present relative errors in layer thicknesses of QWM-2-Suprasil sample (left panel) and QWM-4-Suprasil sample (right panel) determined on the basis of transmittance data taken by the Perkin Elmer spectrophotometer in the spectral range from 400 to 950 nm. Gray bars show errors imposed on layer thicknesses.

Fig. 5.
Fig. 5.

Black bars present relative errors in layer thicknesses of QWM-2-Suprasil sample (left panel) and QWM-4-Suprasil sample (right panel) determined on the basis of transmittance data taken by the Perkin Elmer spectrophotometer in the spectral range from 330 to 950 nm. Gray bars show errors imposed on layer thicknesses.

Fig. 6.
Fig. 6.

Fitting of experimental data (red crosses) by model transmittance (black curve) when reverse engineering was performed using experimental data in the range 400–950 nm (left panel) and in the range 330–950 nm (right panel).

Fig. 7.
Fig. 7.

Black bars present relative errors in layer thicknesses of the QWM-2-Suprasil sample (left panel) and the QWM-4-Suprasil sample (right panel) determined on the basis of ellipsometric measurements with the help of OptiRE software. Gray bars show errors imposed on layer thicknesses.

Fig. 8.
Fig. 8.

Black bars present relative errors in layer thicknesses of the QWM-2-Suprasil sample (left panel) and the QWM-4-Suprasil sample (right panel) determined on the basis of ellipsometric measurements with the help of Woollam software. Gray bars show errors imposed on layer thicknesses.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n(λ)=A0+A1(λ0λ)2+A2(λ0λ)4,
MDF2=1NLi=1Nj=1L[T(X;λj)T^(i)(λj)]2,
T(X,λ)=T(d1,,di;nH(λ)+hH,nL(λ)+hL;λ).
MDF2=MDF2(hH,hL).
T(X;λ)=T((1+δ1)d1,,(1+δi)di;n˜H(λ),n˜L(λ);λ).
MDF2=MDF2(δ1,,δN),
DF2=1Lj=1L[T(X;λj)T^(λj)]2.
T(X,λ)=T(d1,,dN;nH(λ)+hH,nL(λ)+hL;λ).
DF2=DF2(hH,hL),
T(X;λ)=T((1+δ1)d1,,(1+δN)dN;n˜H(λ),n˜L(λ);λ).
DF2=DF2(δ1,,δN),
DF2=12L{j=1L[Ψ(X;λj)Ψ^(λj)ΔΨj]2+j=1L[Δ(X;λj)Δ^(λj)ΔΔj]2},
Ψ(X,λ)=Ψ(d1,,dN;nH(λ)+hH,nL(λ)+hL;λ),Δ(X,λ)=Δ(d1,,dN;nH(λ)+hH,nL(λ)+hL;λ).
Ψ(X;λ)=Ψ((1+δ1)d1,,(1+δN)dN;n˜H(λ),n˜L(λ);λ),Δ(X;λ)=Δ((1+δ1)d1,,(1+δN)dN;n˜H(λ),n˜H(λ);λ).

Metrics