Abstract

We report on a calibration procedure that enhances the precision of an interferometer based frequency stabilization by several orders of magnitude. For this purpose, the frequency deviations of the stabilization are measured precisely by means of a frequency comb. This allows us to implement several calibration steps that compensate different systematic errors. The resulting frequency deviation is shown to be less than 5.7 MHz (rms 1.6 MHz) in the whole wavelength interval 750–795 nm. Wide tuning of a stabilized laser at this exceptional precision is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobtsev, S. Kandrushin, and A. Potekhin, “Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelengthmeter,” Appl. Opt. 46, 5840–5843 (2007).
    [CrossRef]
  2. T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
    [CrossRef]
  3. M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
    [CrossRef]
  4. T. Müller-Wirts, “Method and device for measuring and stabilization using signals from a Fabry-Perot,” U.S. patent 6,178,002, DE 197 43 493 A 1 (3 December 1998).
  5. K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
    [CrossRef]
  6. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt. 20, 3382–3384 (1981).
    [CrossRef]
  7. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  8. G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Lasers Opt. 53, 142–147 (1991).
    [CrossRef]

2011 (1)

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

2007 (1)

2004 (1)

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
[CrossRef]

1991 (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Lasers Opt. 53, 142–147 (1991).
[CrossRef]

1990 (1)

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
[CrossRef]

1981 (1)

Barwood, G. P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Lasers Opt. 53, 142–147 (1991).
[CrossRef]

Birch, K. P.

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cano, D.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Fortágh, J.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Gill, P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Lasers Opt. 53, 142–147 (1991).
[CrossRef]

Hattermann, H.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Heydemann, P. L. M.

Höckh, S.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Holt, R. A.

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
[CrossRef]

Jessen, F.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Kandrushin, S.

Karlewski, F.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Kobtsev, S.

Mack, M.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Müller-Wirts, T.

T. Müller-Wirts, “Method and device for measuring and stabilization using signals from a Fabry-Perot,” U.S. patent 6,178,002, DE 197 43 493 A 1 (3 December 1998).

Potekhin, A.

Rehse, S. J.

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
[CrossRef]

Rosner, S. D.

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
[CrossRef]

Rowley, W. R. C.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Lasers Opt. 53, 142–147 (1991).
[CrossRef]

Scholl, T. J.

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, “Frequency measurements on optically narrowed rb-stabilised laser diodes at 780 nm and 795 nm,” Appl. Phys. B: Lasers Opt. 53, 142–147 (1991).
[CrossRef]

Phys. Rev. A (1)

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of Rb87 to nS and nD Rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[CrossRef]

Precis. Eng. (1)

K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12, 195–198 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer,” Rev. Sci. Instrum. 75, 3318–3326 (2004).
[CrossRef]

Other (2)

T. Müller-Wirts, “Method and device for measuring and stabilization using signals from a Fabry-Perot,” U.S. patent 6,178,002, DE 197 43 493 A 1 (3 December 1998).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Patented interferometer setup subject to calibration. The interferometer is realized as an etalon of BK7 with a geometrical thickness of 50 mm. PD, photo detector; quad, quadrature; norm, normalization. See [4] for details.

Fig. 2.
Fig. 2.

Setup for calibration and characterization of the interferometer. The frequency comb is a self referenced femtosecond fiber laser based design (Menlo Systems). A hydrogen maser and GPS are utilized as time standards. The fiber etalon is used to record the data used in the look-up-table (LUT). A beat note with a frequency comb is recorded using a spectrum analyzer. Application laser, Toptica DLPro; reference laser frequency, 384.227981 THz (DFB diode laser, TEM Messtechnik), Saturation spectroscopy (Cosy, TEM Messtechnik); wavemeter, high finesse WS/7; FI, Faraday isolator; S, shutter; BS, beam splitter; PD, PhotoDiode; OF, polarization maintaining optical fiber; FP, fiber port.

Fig. 3.
Fig. 3.

(a) Measured frequency deviation fdev over the whole accessible wavelength range. Circles and squares are separate datasets taken on two consecutive days. One second order polynomial fit to both datasets is shown. The measurements for the frequency ranges 1 and 2 are shown enlarged in Fig. 4. (b) Residual of a fit to both datasets shown in (a). A vertical line marks the reference laser frequency in both graphs.

Fig. 4.
Fig. 4.

Frequency ranges 1 and 2 shown with higher resolution. (a) Frequency range 2. Three sets of data points at frequency 396 THz within one FSR of the etalon are shown. Circles and squares are taken using different offset phase measurements but the same LUT. For the triangles, a new LUT was generated and the offset phase was newly measured. A linear drift of 130kHz/min obtained from repetitive measurements at the reference wavelength has been subtracted from all datasets for clearer visibility of the frequency-dependent error. (b) Frequency range 1. Two datasets close to the reference laser frequency (vertical line) are shown. To record these data, the reference laser (DFB diode laser) was controlled by the quadrature interferometer and interchanged with the application laser (Toptica DLPro).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(UxUy)(cosφsinφ)withφ=4πνnLc0.

Metrics