Abstract

Fourier transform white-light interferometry recovers the optical path difference of an interferometer by measuring the phase change caused by scanning wavelength. However, the optical spectrum, obtained by wavelength scanning method (λ-method), contains a chirp in period. The chirp would induce deviation and decrease the measurement accuracy. An improved method, the wavenumber scanning method (k-method), is proposed and experimentally demonstrated, in which there is no chirp in the optical spectrum. The measurement results using the k-method and the λ-method are compared experimentally. The experimental results show that the standard deviation of the measurement results decreases from 0.015 to 0.004 μm, when an extrinsic Fabry–Perot interferometer with a cavity length of 387 μm is interrogated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
    [CrossRef]
  2. C. Belleville and G. Duplain, “White-light interferometric multimode fiberoptic strain sensor,” Opt. Lett. 18, 78–80 (1993).
    [CrossRef]
  3. A. C. Wong, P. A. Childs, and G. D. Peng, “Simultaneous demodulation technique for a multiplexed fiber Fizeau interferometer and fiber Bragg grating sensor system,” Opt. Lett. 31, 23–25 (2006).
    [CrossRef]
  4. Y. J. Rao, X. J. Wang, T. Zhu, and C. X. Zhou, “Demodulation algorithm for spatial-frequency-division-multiplexed fiber-optic Fizeau strain sensor networks,” Opt. Lett. 31, 700–702(2006).
    [CrossRef]
  5. M. Han and A. B. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry–Perot interferometers,” Appl. Opt. 43, 4659–4666 (2004).
    [CrossRef]
  6. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004).
    [CrossRef]
  7. F. Xu, D. X. Ren, X. L. Shi, C. Li, W. W. Lu, L. Lu, and B. L. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37, 133–135 (2012).
    [CrossRef]
  8. C. Ma, E. M. Lally, and A. B. Wang, “Toward eliminating signal demodulation jumps in optical fiber intrinsic Fabry–Perot interferometric sensors,” J. Lightwave Technol. 29, 1913–1919 (2011).
    [CrossRef]
  9. B. Yu, A. Wang, G. Pickrell, and J. Xu, “Tunable-optical-filter-based white-light interferometry for sensing,” Opt. Lett. 30, 1452–1454 (2005).
    [CrossRef]
  10. C. Boulet, M. Hathaway, and D. A. Jackson, “Fiber-optic-based absolute displacement sensors at 1500 nm by means of a variant of channeled spectrum signal recovery,” Opt. Lett. 29, 1602–1604 (2004).
    [CrossRef]
  11. V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
    [CrossRef]
  12. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
    [CrossRef]
  13. Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry–Perot interferometric sensors,” Smart Mater. Struc. 17, 055013 (2008).
    [CrossRef]
  14. T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
    [CrossRef]
  15. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20, 75–77 (2008).
    [CrossRef]
  16. Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47, 925–932 (2008).
    [CrossRef]

2012 (1)

2011 (1)

2008 (3)

Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47, 925–932 (2008).
[CrossRef]

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry–Perot interferometric sensors,” Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20, 75–77 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (1)

2004 (3)

2000 (1)

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

1996 (2)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

1993 (1)

Belleville, C.

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

Boulet, C.

Cheng, G. H.

Childs, P. A.

Claus, R.

V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Deng, M.

Duan, D. W.

Duplain, G.

Fernando, G. F.

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Han, M.

Hathaway, M.

Jackson, D. A.

Jiang, Y.

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry–Perot interferometric sensors,” Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20, 75–77 (2008).
[CrossRef]

Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47, 925–932 (2008).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Lally, E. M.

Li, C.

Liu, T.

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Lu, L.

Lu, W. W.

Ma, C.

Murphy, K.

V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Peng, G. D.

Pickrell, G.

Pickrell, G. R.

Rao, Y. J.

Ren, D. X.

Sen, M.

V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

Shen, F.

Shi, X. L.

Tang, C.

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry–Perot interferometric sensors,” Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Wang, A.

Wang, A. B.

Wang, X. J.

Wong, A. C.

Xu, F.

Xu, J.

Yang, X. C.

Yu, B.

Yu, B. L.

Zhang, Y.

Zhou, C. X.

Zhu, T.

Appl. Opt. (2)

Electron. Lett. (1)

V. Bhatia, M. Sen, K. Murphy, and R. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20, 75–77 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7, 58–61 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000).
[CrossRef]

Smart Mater. Struc. (1)

Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry–Perot interferometric sensors,” Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup.

Fig. 2.
Fig. 2.

Original sampled interferometric signal of (a) the EFPI and (b) the etalon.

Fig. 3.
Fig. 3.

Calibrated EFPI optical spectrum with wavenumber k.

Fig. 4.
Fig. 4.

Unwrapped phase of the white-light spectrum.

Fig. 5.
Fig. 5.

Two thousand measurement results with (a) wavenumber scanning method and (b) wavelength scanning method.

Fig. 6.
Fig. 6.

Intervals between the adjacent peaks of the spectrum with (a) wavenumber scanning and (b) wavelength scanning.

Fig. 7.
Fig. 7.

Fourier spectra with (a) cavity length of 387.8 μm and (b) cavity length of 2300 μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g(λ)=a(λ)+b(λ)cos(2πfλλ+π),
Tλ=λ2/(2d).
g(k)=a(k)+b(k)cos(2πf0k+π),
T=1/(2d).
G(f)=A(f)+B(ff0)+B*(f+f0),
h(k)=12b(k)exp(j4πdk).
ln[h(k)]=ln[12b(k)]+jφ(k).
φ(k)=4πdk.
d=Δφ(k)/[4π(k2k1)].

Metrics