Abstract

A three-dimensional index-stress distribution (3DISD) measurement method for determining concurrently the refractive-index distributions (RIDs) and residual-stress distributions (RSDs) in optical fibers is presented. The method combines the quantitative-phase microscopy technique, the Brace–Köhler compensator technique, and computed tomography principles. These techniques are implemented on a common apparatus to enable concurrent characterization of the RID and the RSD. Measurements are performed on Corning SMF-28 fiber in an unperturbed section and in a section exposed to CO2 laser radiation. The concurrent measurements allow for the first accurate comparison of the collocated RID and RSD. The resolutions of the refractive index and stress are estimated to be 2.34×105 and 0.35 MPa, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
    [CrossRef]
  2. P. R. Watekar, S. Ju, and W. T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express 17, 10350–10363 (2009).
    [CrossRef]
  3. L. Eldada, “Optical communication components,” Rev. Sci. Instrum. 75, 575–593 (2004).
    [CrossRef]
  4. J. A. Buck, Fundamentals of Optical Fibers (Wiley, 2004).
  5. A. C. O. Chan and M. Premaratne, “Dispersion-compensating fiber Raman amplifiers with step, parabolic, and triangular refractive index profiles,” J. Lightwave Technol. 25, 1190–1197 (2007).
    [CrossRef]
  6. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
    [CrossRef]
  7. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
    [CrossRef]
  8. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
    [CrossRef]
  9. M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
    [CrossRef]
  10. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
    [CrossRef]
  11. Y. P. Wang, D. N. Wang, W. Jin, and Y. J. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
    [CrossRef]
  12. K. Brugger, “Effect of thermal stress on refractive index in clad fibers,” Appl. Opt. 10, 437–438 (1971).
    [CrossRef]
  13. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980).
    [CrossRef]
  14. Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989).
    [CrossRef]
  15. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
    [CrossRef]
  16. P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20, 449–450 (1984).
    [CrossRef]
  17. P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
    [CrossRef]
  18. S. M. Oh, P. H. Predieux, and X. G. Glavas, “Increased durability of optical fiber through the use of compressive cladding,” Opt. Lett. 7, 241–243 (1982).
    [CrossRef]
  19. D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
    [CrossRef]
  20. Y. Park, U.-C. Paek, and D. Y. Kim, “Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile,” Opt. Lett. 27, 1291–1293 (2002).
    [CrossRef]
  21. M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
    [CrossRef]
  22. S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
    [CrossRef]
  23. Y. Park, U.-C. Paek, and D. Y. Kim, “Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography,” Opt. Lett. 27, 1217–1219 (2002).
    [CrossRef]
  24. I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
    [CrossRef]
  25. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
    [CrossRef]
  26. H. G. Limberger, C. Ban, R. P. Salathe, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express 15, 5610–5615 (2007).
    [CrossRef]
  27. N. Belhadj, Y. Park, S. LaRochelle, K. Dossou, and J. Azana, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16, 8727–8741 (2008).
    [CrossRef]
  28. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001).
    [CrossRef]
  29. B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002).
    [CrossRef]
  30. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003).
    [CrossRef]
  31. F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
    [CrossRef]
  32. F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathe, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005).
    [CrossRef]
  33. A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
    [CrossRef]
  34. B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44, 316–327 (2005).
    [CrossRef]
  35. B. L. Bachim, T. K. Gaylord, and S. C. Mettler, “Refractive-index profiling of azimuthally asymmetric optical fibers by microinterferometric optical phase tomography,” Opt. Lett. 30, 1126–1128 (2005).
    [CrossRef]
  36. M. Sochacka, “Optical fibers profiling by phase-stepping transverse interferometry,” J. Lightwave Technol. 12, 19–23 (1994).
    [CrossRef]
  37. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
    [CrossRef]
  38. T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathe, and C. Depeursinge, “Polarization microscopy by use of digital holography: Application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
    [CrossRef]
  39. L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006).
    [CrossRef]
  40. P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259–263 (2009).
    [CrossRef]
  41. B. Sevigny, F. Busque, N. Godbout, S. Lacroix, and M. Faucher, “High-resolution refractive index anisotropy measurement in optical fibers through phase retardation modulation,” Appl. Opt. 47, 1215–1222 (2008).
    [CrossRef]
  42. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [CrossRef]
  43. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [CrossRef]
  44. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
    [CrossRef]
  45. N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
    [CrossRef]
  46. N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
    [CrossRef]
  47. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
    [CrossRef]
  48. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011).
    [CrossRef]
  49. X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
    [CrossRef]
  50. E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, “Index mapping for fibers with symmetric and asymmetric refractive index profiles,” Opt. Express 16, 10912–10917 (2008).
    [CrossRef]
  51. N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
    [CrossRef]
  52. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003).
  53. A. Barty, “Quantitative phase-amplitude microscopy,” Ph.D. thesis (University of Melbourne, Parkville, 2000).
  54. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
    [CrossRef]
  55. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
    [CrossRef]
  56. M. R. Hutsel, C. C. Montarou, A. I. Dachevski, and T. K. Gaylord, “Algorithm performance in the determination of the refractive-index profile of optical fibers,” Appl. Opt. 47, 760–767 (2008).
    [CrossRef]
  57. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).
  58. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
    [CrossRef]
  59. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004).
    [CrossRef]
  60. F. Durr, H. G. Limberger, R. P. Salathe, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2006).
  61. M. R. Hutsel and T. K. Gaylord, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, are preparing a manuscript to be called “Residual stress relaxation and densification in CO2-laser-induced long-period fiber gratings.”
  62. D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
    [CrossRef]

2011 (1)

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011).
[CrossRef]

2010 (2)

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[CrossRef]

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

2009 (3)

2008 (6)

2007 (5)

2006 (3)

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006).
[CrossRef]

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

2005 (5)

2004 (9)

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

L. Eldada, “Optical communication components,” Rev. Sci. Instrum. 75, 575–593 (2004).
[CrossRef]

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

2003 (3)

2002 (4)

2001 (2)

2000 (2)

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

1998 (1)

1996 (1)

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

1995 (1)

1994 (1)

M. Sochacka, “Optical fibers profiling by phase-stepping transverse interferometry,” J. Lightwave Technol. 12, 19–23 (1994).
[CrossRef]

1989 (2)

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
[CrossRef]

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989).
[CrossRef]

1984 (1)

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20, 449–450 (1984).
[CrossRef]

1983 (1)

1982 (1)

1980 (1)

1971 (1)

Ahn, T. J.

Ampem-Lassen, E.

Anemogiannis, E.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Azana, J.

Bachim, B. L.

Ban, C.

Barty, A.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

A. Barty, “Quantitative phase-amplitude microscopy,” Ph.D. thesis (University of Melbourne, Parkville, 2000).

Baxter, G. W.

Belhadj, N.

Belton, D. X.

X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
[CrossRef]

Bouten, P. C. P.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
[CrossRef]

Braiwish, M. I.

Brugger, K.

Bruno, L.

L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006).
[CrossRef]

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers (Wiley, 2004).

Busque, F.

Chan, A. C. O.

Chu, P. L.

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20, 449–450 (1984).
[CrossRef]

Chung, Y.

Chung, Y. J.

Cochet, F.

Colomb, T.

Cuche, E.

Curl, C. L.

Dachevski, A. I.

Davis, D. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Delbridge, L. M. D.

Depeursinge, C.

Dianov, E. M.

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

Donohoe, G. W.

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

Dossou, K.

Douay, M.

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

Dragomir, N. M.

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
[CrossRef]

N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
[CrossRef]

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

Durr, F.

T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathe, and C. Depeursinge, “Polarization microscopy by use of digital holography: Application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[CrossRef]

F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathe, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005).
[CrossRef]

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

F. Durr, H. G. Limberger, R. P. Salathe, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2006).

Eldada, L.

L. Eldada, “Optical communication components,” Rev. Sci. Instrum. 75, 575–593 (2004).
[CrossRef]

Faucher, M.

Ferrario, M.

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

Fertein, E.

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Fonjallaz, P. Y.

Garrett, B. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Gaylord, T. K.

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011).
[CrossRef]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
[CrossRef]

M. R. Hutsel, C. C. Montarou, A. I. Dachevski, and T. K. Gaylord, “Algorithm performance in the determination of the refractive-index profile of optical fibers,” Appl. Opt. 47, 760–767 (2008).
[CrossRef]

B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44, 316–327 (2005).
[CrossRef]

B. L. Bachim, T. K. Gaylord, and S. C. Mettler, “Refractive-index profiling of azimuthally asymmetric optical fibers by microinterferometric optical phase tomography,” Opt. Lett. 30, 1126–1128 (2005).
[CrossRef]

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

M. R. Hutsel and T. K. Gaylord, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, are preparing a manuscript to be called “Residual stress relaxation and densification in CO2-laser-induced long-period fiber gratings.”

Glavas, X. G.

Glytsis, E. N.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Godbout, N.

Goh, X. M.

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
[CrossRef]

N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
[CrossRef]

Han, S.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004).
[CrossRef]

Han, W. T.

Hanawa, F.

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989).
[CrossRef]

Hermann, W.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
[CrossRef]

Hibino, Y.

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989).
[CrossRef]

Hindle, F.

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

Horiguchi, M.

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989).
[CrossRef]

Hsieh, J.

J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003).

Hu, A. Z.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
[CrossRef]

Huntington, S. T.

Hutsel, M. R.

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011).
[CrossRef]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
[CrossRef]

M. R. Hutsel, C. C. Montarou, A. I. Dachevski, and T. K. Gaylord, “Algorithm performance in the determination of the refractive-index profile of optical fibers,” Appl. Opt. 47, 760–767 (2008).
[CrossRef]

M. R. Hutsel and T. K. Gaylord, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, are preparing a manuscript to be called “Residual stress relaxation and densification in CO2-laser-induced long-period fiber gratings.”

Ingle, R. R.

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011).
[CrossRef]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
[CrossRef]

Jamieson, D. N.

X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
[CrossRef]

Jasapara, J.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Jin, W.

Jochem, C. M. G.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
[CrossRef]

Jones, S. L.

Ju, S.

Kang, M. S.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
[CrossRef]

Kim, B. H.

Kim, B. Y.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
[CrossRef]

Kim, B.-H.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004).
[CrossRef]

Kim, C.-S.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004).
[CrossRef]

Kim, D. Y.

Kim, H. S.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
[CrossRef]

Kniazewski, P.

P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259–263 (2009).
[CrossRef]

Kozacki, T.

P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259–263 (2009).
[CrossRef]

Kujawinska, M.

P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259–263 (2009).
[CrossRef]

Lacroix, S.

LaRochelle, S.

Lee, B. H.

Leuenberger, B.

Limberger, H. G.

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

Marques, P. V. S.

Marquet, P.

Martinelli, M.

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

McMahon, P. J.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
[CrossRef]

Mettler, S. C.

Mitschke, F.

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

Montarou, C. C.

Nikogosyan, D. N.

Nugent, K. A.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

Oh, S. M.

Oh, S. T.

Paek, U. C.

Paek, U.-C.

Paganin, D.

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
[CrossRef]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

Pagnotta, L.

L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006).
[CrossRef]

Park, H. S.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
[CrossRef]

Park, Y.

Peng, J. L.

Pietralunga, S. M.

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

Poggialini, A.

L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006).
[CrossRef]

Predieux, P. H.

Premaratne, M.

Przygodzki, C.

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

Ran, Z. L.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
[CrossRef]

Ran, Z.-L.

Rao, Y. J.

Y. P. Wang, D. N. Wang, W. Jin, and Y. J. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
[CrossRef]

Rao, Y.-J.

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Rego, G.

Ridgway, D. N.

Roberts, A.

E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, “Index mapping for fibers with symmetric and asymmetric refractive index profiles,” Opt. Express 16, 10912–10917 (2008).
[CrossRef]

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
[CrossRef]

N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007).
[CrossRef]

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

Ryu, H. S.

Salathe, R. P.

Sandels, G. A.

Scherer, G. W.

Semjonov, S. L.

Sevigny, B.

Shin, I. H.

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Sidiroglou, F.

Slattery, S. A.

Sochacka, M.

M. Sochacka, “Optical fibers profiling by phase-stepping transverse interferometry,” J. Lightwave Technol. 12, 19–23 (1994).
[CrossRef]

Tacca, M.

Teague, M. R.

Torregiani, M.

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Veetil, S. P.

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Viskoe, D. A.

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

Wang, D. N.

Wang, Y. P.

Y. P. Wang, D. N. Wang, W. Jin, and Y. J. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
[CrossRef]

Wang, Y.-P.

Watekar, P. R.

Weichert, D. U.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
[CrossRef]

Whitbread, T.

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20, 449–450 (1984).
[CrossRef]

White, I. A.

Wisk, P.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Yablon, A. D.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

F. Durr, H. G. Limberger, R. P. Salathe, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2006).

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

Yeom, D. I.

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
[CrossRef]

Yu, J.

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

Zhou, X.

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

Zhu, T.

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
[CrossRef]

Appl. Opt. (10)

Y. P. Wang, D. N. Wang, W. Jin, and Y. J. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
[CrossRef]

K. Brugger, “Effect of thermal stress on refractive index in clad fibers,” Appl. Opt. 10, 437–438 (1971).
[CrossRef]

G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980).
[CrossRef]

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002).
[CrossRef]

B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44, 316–327 (2005).
[CrossRef]

T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathe, and C. Depeursinge, “Polarization microscopy by use of digital holography: Application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[CrossRef]

B. Sevigny, F. Busque, N. Godbout, S. Lacroix, and M. Faucher, “High-resolution refractive index anisotropy measurement in optical fibers through phase retardation modulation,” Appl. Opt. 47, 1215–1222 (2008).
[CrossRef]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
[CrossRef]

M. R. Hutsel, C. C. Montarou, A. I. Dachevski, and T. K. Gaylord, “Algorithm performance in the determination of the refractive-index profile of optical fibers,” Appl. Opt. 47, 760–767 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007).
[CrossRef]

F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004).
[CrossRef]

Electron. Lett. (2)

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20, 449–450 (1984).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

IEE Proc. Optoelectron. (1)

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006).
[CrossRef]

IEEE Commun. Mag. (1)

J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003).
[CrossRef]

D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005).
[CrossRef]

M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011).
[CrossRef]

J. Appl. Phys. (1)

Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989).
[CrossRef]

J. Lightwave Technol. (8)

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989).
[CrossRef]

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
[CrossRef]

A. C. O. Chan and M. Premaratne, “Dispersion-compensating fiber Raman amplifiers with step, parabolic, and triangular refractive index profiles,” J. Lightwave Technol. 25, 1190–1197 (2007).
[CrossRef]

S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006).
[CrossRef]

F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathe, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004).
[CrossRef]

M. Sochacka, “Optical fibers profiling by phase-stepping transverse interferometry,” J. Lightwave Technol. 12, 19–23 (1994).
[CrossRef]

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[CrossRef]

J. Microsc. (1)

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Microsc. Res. Tech. (1)

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

Opt. Commun. (3)

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004).
[CrossRef]

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lasers Eng. (2)

L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006).
[CrossRef]

P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259–263 (2009).
[CrossRef]

Opt. Lett. (10)

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

S. M. Oh, P. H. Predieux, and X. G. Glavas, “Increased durability of optical fiber through the use of compressive cladding,” Opt. Lett. 7, 241–243 (1982).
[CrossRef]

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
[CrossRef]

Y. Park, U.-C. Paek, and D. Y. Kim, “Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography,” Opt. Lett. 27, 1217–1219 (2002).
[CrossRef]

Y. Park, U.-C. Paek, and D. Y. Kim, “Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile,” Opt. Lett. 27, 1291–1293 (2002).
[CrossRef]

B. L. Bachim, T. K. Gaylord, and S. C. Mettler, “Refractive-index profiling of azimuthally asymmetric optical fibers by microinterferometric optical phase tomography,” Opt. Lett. 30, 1126–1128 (2005).
[CrossRef]

H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Eldada, “Optical communication components,” Rev. Sci. Instrum. 75, 575–593 (2004).
[CrossRef]

Other (6)

J. A. Buck, Fundamentals of Optical Fibers (Wiley, 2004).

J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003).

A. Barty, “Quantitative phase-amplitude microscopy,” Ph.D. thesis (University of Melbourne, Parkville, 2000).

F. Durr, H. G. Limberger, R. P. Salathe, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2006).

M. R. Hutsel and T. K. Gaylord, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, are preparing a manuscript to be called “Residual stress relaxation and densification in CO2-laser-induced long-period fiber gratings.”

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of the components of the microscope and a fiber sample used for the determination of the phase shift produced by the fiber. Axial rotation of the fiber between measurements is indicated by θf. Focusing and defocusing of the fiber is achieved by moving the stage plate of the microscope in the vertical direction, zm.

Fig. 2.
Fig. 2.

Configuration of fiber illumination for phase-shift measurements.

Fig. 3.
Fig. 3.

Average RIPs of an unperturbed Corning SMF-28 fiber obtained using the QPM technique with a defocus distance of 3 μm and various condenser NAs, NAc. Each RIP is the average of 10 measurements. The error bars indicate the standard deviation of the average RIP at positions of r=2, 10, 20, 30, 40, 50, 60, and 70 μm. The dotted lines indicate the core radius (4.1 μm) and the cladding radius (62.5 μm) of a Corning SMF-28 fiber.

Fig. 4.
Fig. 4.

Plots of (a) a typical cross-sectional RID and (b) a typical cross-sectional RSD in an unperturbed Corning SMF-28 fiber. The inset in (a) is a pseudocolor plot of the core showing the central dip or burn-off region. The pseudocolor scale on the inset ranges from 47×103. Line profiles of the RSD (b) are shown for x=0, 10, 20, 30, 40, and 50 μm.

Fig. 5.
Fig. 5.

Relative RIDs (left column) and RSDs (right column) at various longitudinal positions in a section of Corning SMF-28 fiber exposed to a focused, 500 ms duration pulse from a CO2 laser. The position z=0 corresponds approximately to the center of the exposure. The fiber diagram indicates the approximate spacing between the longitudinal positions relative to the fiber diameter. The arrows below the z=0 distributions indicate the exposure direction.

Tables (2)

Tables Icon

Table 1. Percent Standard Deviation in Δns for 10 Identical Measurements

Tables Icon

Table 2. Percent Standard Deviation in Δns for Measurements with Intentional In-Focus Position Error

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2πλ¯Izm=·(Iφ),
φ(x,θf)=2πλΔn(x,y)dy,
Φ˜(s,θf)=2πλΔN˜(scosθf,ssinθf),
Δn(x,y)=λ2π0π[Φ˜(s,θf)|s|ei2πsxds]dθ.

Metrics