Abstract

Broadband reduction of light reflection from the surface of InP wafers after high-temperature annealing in air has been observed. In the transparency region of the material, the reflection drop is accompanied by increasing transmission of light through the wafer. The spectral position of a deep minimum of the reflection coefficient can be tuned, by varying the temperature and the time of annealing, in a wide spectral range from ultraviolet to infrared. The effect is due to formation of thermal oxide layers on the surfaces of the wafer with optical parameters favorable for antireflection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
    [CrossRef]
  2. B.-J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19, A326–A330 (2011).
    [CrossRef]
  3. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
    [CrossRef]
  4. A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
    [CrossRef]
  5. J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
    [CrossRef]
  6. M. Yamaguchi and K. Ando, “Thermal oxidation of InP and properties of oxide film,” J. Appl. Phys. 51, 5007–5012 (1980).
    [CrossRef]
  7. A. Nelson, K. Geib, and C. W. Wilmsen, “Composition and structure of thermal oxides of indium phosphide,” J. Appl. Phys. 54, 4134–4140 (1983).
    [CrossRef]
  8. A. A. Studna and G. J. Gualtieri, “Optical properties and water absorption of anodically grown native oxide on InP,” Appl. Phys. Lett. 39, 965 (1981).
    [CrossRef]
  9. W. F. Wu and B. S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Appl. Surf. Sci. 68, 497–504 (1993).
    [CrossRef]
  10. FreeSnell: Refractive Index Spectra nk-data, http://people.csail.mit.edu/jaffer/FreeSnell/nk.html ; New Semiconductor Materials. Characteristics and Properties, n, k database, http://www.ioffe.ru/SVA/NSM/nk/index.html .
  11. Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
    [CrossRef]
  12. O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
    [CrossRef]
  13. S. Luryi and A. Subashiev, “Semiconductor scintillator for three-dimensional array of radiation detectors,” in Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy (Wiley Interscience, 2010), pp. 331–346.
  14. We used ACROTEC wafers from NIKKO Metals.
  15. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices(Wiley, 2007), p. 54.
  16. C. R. Bull, “A model of reflection of near-infrared radiation,” J. Mod. Opt. 37, 1955–1964 (1990).
    [CrossRef]
  17. O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).
  18. S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. A 48, 43–49(1958).
    [CrossRef]
  19. D. E. Aspnes and A. A. Studina, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and In Sb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  20. X. Lui, M. S. Denker, and E. A. Irene, “An oxygen tracer study of InP oxidation,” J. Electrochem. Soc. 139, 799–802 (1992).
    [CrossRef]
  21. J. Tauc, “Optical properties of amorphous semiconductors,” in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, 1974), p. 159.
  22. D. Bedeaux and J. Vlieger, Optical Properties of Surfaces(Imperial College Press, 2004).
  23. T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
    [CrossRef]

2011 (2)

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

B.-J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19, A326–A330 (2011).
[CrossRef]

2010 (1)

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

2008 (2)

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

2007 (1)

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

1993 (1)

W. F. Wu and B. S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Appl. Surf. Sci. 68, 497–504 (1993).
[CrossRef]

1992 (1)

X. Lui, M. S. Denker, and E. A. Irene, “An oxygen tracer study of InP oxidation,” J. Electrochem. Soc. 139, 799–802 (1992).
[CrossRef]

1990 (2)

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

C. R. Bull, “A model of reflection of near-infrared radiation,” J. Mod. Opt. 37, 1955–1964 (1990).
[CrossRef]

1988 (1)

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

1983 (2)

A. Nelson, K. Geib, and C. W. Wilmsen, “Composition and structure of thermal oxides of indium phosphide,” J. Appl. Phys. 54, 4134–4140 (1983).
[CrossRef]

D. E. Aspnes and A. A. Studina, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and In Sb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

1982 (1)

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

1981 (1)

A. A. Studna and G. J. Gualtieri, “Optical properties and water absorption of anodically grown native oxide on InP,” Appl. Phys. Lett. 39, 965 (1981).
[CrossRef]

1980 (1)

M. Yamaguchi and K. Ando, “Thermal oxidation of InP and properties of oxide film,” J. Appl. Phys. 51, 5007–5012 (1980).
[CrossRef]

1958 (1)

S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. A 48, 43–49(1958).
[CrossRef]

Ando, K.

M. Yamaguchi and K. Ando, “Thermal oxidation of InP and properties of oxide film,” J. Appl. Phys. 51, 5007–5012 (1980).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studina, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and In Sb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Baker, J. E.

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Basilio, L. I.

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Bedeaux, D.

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces(Imperial College Press, 2004).

Bergignat, E.

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

Bull, C. R.

C. R. Bull, “A model of reflection of near-infrared radiation,” J. Mod. Opt. 37, 1955–1964 (1990).
[CrossRef]

Chen, Z.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Chiou, B. S.

W. F. Wu and B. S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Appl. Surf. Sci. 68, 497–504 (1993).
[CrossRef]

Cruz-Cabrera, A. A.

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Denker, M. S.

X. Lui, M. S. Denker, and E. A. Irene, “An oxygen tracer study of InP oxidation,” J. Electrochem. Soc. 139, 799–802 (1992).
[CrossRef]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Finnegan, N. L.

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Gagnair, A.

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

Geib, K.

A. Nelson, K. Geib, and C. W. Wilmsen, “Composition and structure of thermal oxides of indium phosphide,” J. Appl. Phys. 54, 4134–4140 (1983).
[CrossRef]

Gualtieri, G. J.

A. A. Studna and G. J. Gualtieri, “Optical properties and water absorption of anodically grown native oxide on InP,” Appl. Phys. Lett. 39, 965 (1981).
[CrossRef]

Hirano, R.

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

Hollinger, G.

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

Hosoda, T.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

Inoue, T.

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

Irene, E. A.

X. Lui, M. S. Denker, and E. A. Irene, “An oxygen tracer study of InP oxidation,” J. Electrochem. Soc. 139, 799–802 (1992).
[CrossRef]

Joseph, J.

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

Kainosho, K.

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

Kemme, S. A.

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Kim, B.-J.

Kim, J.

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Lifshitz, N.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

Lui, X.

X. Lui, M. S. Denker, and E. A. Irene, “An oxygen tracer study of InP oxidation,” J. Electrochem. Soc. 139, 799–802 (1992).
[CrossRef]

Luryi, S.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

S. Luryi and A. Subashiev, “Semiconductor scintillator for three-dimensional array of radiation detectors,” in Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy (Wiley Interscience, 2010), pp. 331–346.

Nelson, A.

A. Nelson, K. Geib, and C. W. Wilmsen, “Composition and structure of thermal oxides of indium phosphide,” J. Appl. Phys. 54, 4134–4140 (1983).
[CrossRef]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices(Wiley, 2007), p. 54.

Oberstar, J. D.

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Oda, O.

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

Peters, D. W.

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Robach, Y.

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

Sammann, E. A.

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Samora, S.

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Semyonov, O.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

Shabalov, A.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

Shimakura, H.

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

Smith, S. D.

S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. A 48, 43–49(1958).
[CrossRef]

Streetman, B. G.

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Studina, A. A.

D. E. Aspnes and A. A. Studina, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and In Sb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Studna, A. A.

A. A. Studna and G. J. Gualtieri, “Optical properties and water absorption of anodically grown native oxide on InP,” Appl. Phys. Lett. 39, 965 (1981).
[CrossRef]

Subashiev, A.

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

S. Luryi and A. Subashiev, “Semiconductor scintillator for three-dimensional array of radiation detectors,” in Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy (Wiley Interscience, 2010), pp. 331–346.

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices(Wiley, 2007), p. 54.

Tauc, J.

J. Tauc, “Optical properties of amorphous semiconductors,” in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, 1974), p. 159.

Vlieger, J.

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces(Imperial College Press, 2004).

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Wendt, J. R.

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Williams, P.

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Wilmsen, C. W.

A. Nelson, K. Geib, and C. W. Wilmsen, “Composition and structure of thermal oxides of indium phosphide,” J. Appl. Phys. 54, 4134–4140 (1983).
[CrossRef]

Wu, W. F.

W. F. Wu and B. S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Appl. Surf. Sci. 68, 497–504 (1993).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi and K. Ando, “Thermal oxidation of InP and properties of oxide film,” J. Appl. Phys. 51, 5007–5012 (1980).
[CrossRef]

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

A. A. Studna and G. J. Gualtieri, “Optical properties and water absorption of anodically grown native oxide on InP,” Appl. Phys. Lett. 39, 965 (1981).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

W. F. Wu and B. S. Chiou, “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Appl. Surf. Sci. 68, 497–504 (1993).
[CrossRef]

J. Appl. Phys. (4)

O. Semyonov, A. Subashiev, A. Shabalov, N. Lifshitz, Z. Chen, T. Hosoda, and S. Luryi, “Reduction of optical reflection from InP semiconductor wafers after high-temperature annealing,” submitted to J. Appl. Phys., http://arxiv.org/abs/1112.5398v1 (2011).

M. Yamaguchi and K. Ando, “Thermal oxidation of InP and properties of oxide film,” J. Appl. Phys. 51, 5007–5012 (1980).
[CrossRef]

A. Nelson, K. Geib, and C. W. Wilmsen, “Composition and structure of thermal oxides of indium phosphide,” J. Appl. Phys. 54, 4134–4140 (1983).
[CrossRef]

O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010).
[CrossRef]

J. Electrochem. Soc. (2)

X. Lui, M. S. Denker, and E. A. Irene, “An oxygen tracer study of InP oxidation,” J. Electrochem. Soc. 139, 799–802 (1992).
[CrossRef]

T. Inoue, H. Shimakura, K. Kainosho, R. Hirano, and O. Oda, “Annealing of undoped InP and evaluation by luminescence,” J. Electrochem. Soc. 137, 1283–1288 (1990).
[CrossRef]

J. Mod. Opt. (1)

C. R. Bull, “A model of reflection of near-infrared radiation,” J. Mod. Opt. 37, 1955–1964 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. A 48, 43–49(1958).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studina, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and In Sb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Proc. SPIE (1)

A. A. Cruz-Cabrera, L. I. Basilio, D. W. Peters, J. R. Wendt, S. A. Kemme, and S. Samora, “Fabrication and testing of plasmonic optimized transmission and reflection coatings,” Proc. SPIE 6883, 68830R (2008).
[CrossRef]

Thin Solid Films (2)

J. D. Oberstar, B. G. Streetman, J. E. Baker, N. L. Finnegan, E. A. Sammann, and P. Williams, “Annealing encapsulants for InP I: Auger electron and secondary ion mass spectrometric studies,” Thin Solid Films 94, 149–159 (1982).
[CrossRef]

Y. Robach, A. Gagnair, J. Joseph, E. Bergignat, and G. Hollinger, “Optical properties of native oxides on InP,” Thin Solid Films 162, 81–88 (1988).
[CrossRef]

Other (6)

FreeSnell: Refractive Index Spectra nk-data, http://people.csail.mit.edu/jaffer/FreeSnell/nk.html ; New Semiconductor Materials. Characteristics and Properties, n, k database, http://www.ioffe.ru/SVA/NSM/nk/index.html .

J. Tauc, “Optical properties of amorphous semiconductors,” in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, 1974), p. 159.

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces(Imperial College Press, 2004).

S. Luryi and A. Subashiev, “Semiconductor scintillator for three-dimensional array of radiation detectors,” in Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy (Wiley Interscience, 2010), pp. 331–346.

We used ACROTEC wafers from NIKKO Metals.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices(Wiley, 2007), p. 54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Raw reflection Rtot with raw transmission Ttot and (b) reflection coefficient R(E) (solid curves) as functions of photon energy for the samples annealed at 350 (1), 500 (2), and 600 °C (3) for tann=30min. (c) Raw reflection Rtot(E) with raw transmission Ttot(E) and (d) reflection coefficient R(E) (solid curves) as functions of the photon energy for InP samples annealed at T=600°C during tann=30 (1), 38 (2), and 45 min (3). Also shown are the fits (dashed curves) of the experimental graphs R(E) in the model of a homogeneous oxide layer (see details in the text). The sharp drop of transmission Ttot in (a) and (c) and the vertical dash-dot lines in (b) and (d) indicate the position of the absorption edge of our InP samples.

Fig. 2.
Fig. 2.

SEM (backscattered electrons) images of the samples annealed at 600 °C, for (a) 30, (b) 38, and (c) 45 min, respectively. The darker areas correspond to the patterns of lower density in terms of the effective atomic weight (presumably oxide clusters). Note that their lateral size grows with the annealing time from 50 to 100 nm (a) to 0.5 to 1 μm (c). The corresponding SEM images of the cleaved sides of the samples are shown at the bottom section of each micrograph. The magnified image of a small part of the side SEM image for 30 min annealing is also shown in the insert on (a).

Fig. 3.
Fig. 3.

Experimental transmission Ttot of an original (reference) sample and the sample annealed at T=600°C for 45 min (dots) as a function of the incidence angle for s- and p-polarizations of the incident laser beam of 980 nm (E=1.267eV) (dots). Solid lines show the calculated data (see the text).

Fig. 4.
Fig. 4.

Dependence of real and imaginary parts of dielectric function of the oxide layer evaluated from fitting the interference pattern of the reflection spectra at 600 °C. Dashed curves show Reε and Imε according to Robach et al. [11].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rtot=R(1+(1R)2t21R2t2),
Ttot=(1R)2t1R2t2.

Metrics