Abstract

Miniaturization is the main goal for system design in future cameras. This paper offers a novel method to scale down the optical system and to improve the image quality. As with the human retina, the detector array is spherically bent to fit the curved image surface; so the field curvature aberration is directly suppressed, leading to a better resolution and a simplified optical design. By thinning the substrate, the device is monolithically curved without modifying the fabrication process of the active pixels. Optical characterizations have been performed on planar and curved focal plane based cameras to illustrate the optical advantages of detector array curvature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Braüer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
    [CrossRef]
  2. G. Druart, N. Guérineau, J. Taboury, S. Rommeluère, R. Haïdar, J. Primot, M. Fendler, and J.-C. Cigna, “Compact infrared pinhole fisheye for wide field applications,” Appl. Opt. 48, 1104–1113 (2009).
    [CrossRef]
  3. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
    [CrossRef]
  4. F. de la Barriere, G. Druart, N. Guerineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
    [CrossRef]
  5. O. Iwert and B. Delabre, “The challenge of highly curved monolithic imaging detectors,” Proc. SPIE 7742, 774227 (2010).
    [CrossRef]
  6. S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
    [CrossRef]
  7. D. Dumas, M. Fendler, F. Berger, B. Cloix, C. Pornin, N. Baier, G. Druart, J. Primot, and E. le Coarer, “An infrared camera based on curved retina,” Opt. Lett. 37, 653–655 (2012).
    [CrossRef]
  8. S. Snow and S. C. Jacobsen, “Microfabrication processes on cylindrical substrates—Part II: Lithography and connections,” Microelectron. Eng. 84, 11–20 (2007).
    [CrossRef]
  9. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
    [CrossRef]
  10. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
    [CrossRef]
  11. R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
    [CrossRef]
  12. S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989).
    [CrossRef]
  13. K. Iizuka, Engineering Optics (Springer-Verlag, 1987).
  14. R. Tummala, System on Package: Miniaturization of the Entire System, 1st ed. (McGraw-Hill Professional, 2008).

2012 (1)

2011 (1)

2010 (2)

2009 (3)

2008 (3)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
[CrossRef]

2007 (1)

S. Snow and S. C. Jacobsen, “Microfabrication processes on cylindrical substrates—Part II: Lithography and connections,” Microelectron. Eng. 84, 11–20 (2007).
[CrossRef]

1989 (1)

S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989).
[CrossRef]

Andersson, M.

Baier, N.

Berger, F.

Braüer, A.

Brückner, A.

Catrysse, P. B.

S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
[CrossRef]

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

Chen, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Choi, W. M.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Cigna, J.-C.

Cloix, B.

Cui, B.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Dannberg, P.

de la Barriere, F.

Delabre, B.

O. Iwert and B. Delabre, “The challenge of highly curved monolithic imaging detectors,” Proc. SPIE 7742, 774227 (2010).
[CrossRef]

Dinyari, R.

S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
[CrossRef]

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

Druart, G.

Dumas, D.

Duparré, J.

Ericson, F.

S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989).
[CrossRef]

Fendler, M.

Ge, H.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Geddes, J. B.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Gu, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Guerineau, N.

Guérineau, N.

Haïdar, R.

Harvey, A. R.

Huang, K.

S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
[CrossRef]

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

Huang, Y.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Huckridge, D.

Iizuka, K.

K. Iizuka, Engineering Optics (Springer-Verlag, 1987).

Iwert, O.

O. Iwert and B. Delabre, “The challenge of highly curved monolithic imaging detectors,” Proc. SPIE 7742, 774227 (2010).
[CrossRef]

Jacobsen, S. C.

S. Snow and S. C. Jacobsen, “Microfabrication processes on cylindrical substrates—Part II: Lithography and connections,” Microelectron. Eng. 84, 11–20 (2007).
[CrossRef]

Johansson, S.

S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989).
[CrossRef]

Ko, H. C.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

le Coarer, E.

Leitel, R.

Li, Z.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Malyarchuk, V.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Muyo, G.

Peumans, P.

S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
[CrossRef]

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

Pornin, C.

Primot, J.

Rim, S. B.

Rim, S.-B.

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

Rogers, J. A.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Rommeluère, S.

Schweitz, J.-Å.

S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989).
[CrossRef]

Singh, A.

Snow, S.

S. Snow and S. C. Jacobsen, “Microfabrication processes on cylindrical substrates—Part II: Lithography and connections,” Microelectron. Eng. 84, 11–20 (2007).
[CrossRef]

Song, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Stoykovich, M. P.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Taboury, J.

Tummala, R.

R. Tummala, System on Package: Miniaturization of the Entire System, 1st ed. (McGraw-Hill Professional, 2008).

Tünnermann, A.

Wang, L.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Wang, S.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Williams, R. S.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Wood, A.

Wu, W.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Xia, Q.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Xiao, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Yu, C.-J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Yuan, C.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008).
[CrossRef]

J. Appl. Phys. (1)

S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989).
[CrossRef]

Microelectron. Eng. (1)

S. Snow and S. C. Jacobsen, “Microfabrication processes on cylindrical substrates—Part II: Lithography and connections,” Microelectron. Eng. 84, 11–20 (2007).
[CrossRef]

Nano Lett. (1)

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009).
[CrossRef]

Nature (1)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

O. Iwert and B. Delabre, “The challenge of highly curved monolithic imaging detectors,” Proc. SPIE 7742, 774227 (2010).
[CrossRef]

Other (2)

K. Iizuka, Engineering Optics (Springer-Verlag, 1987).

R. Tummala, System on Package: Miniaturization of the Entire System, 1st ed. (McGraw-Hill Professional, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Concave curvature of thinned silicon square sample on a glass holder. (a) Picture of curved sample, (b) scanned surface; (c) surface difference between scanned surface and the perfect sphere.

Fig. 2.
Fig. 2.

Characterization of curved bolometer performed by optical profilometry. (a) Picture of curved bolometer; (b) scanned surface; (c) surface difference between scanned surface and the perfect sphere.

Fig. 3.
Fig. 3.

The camera’s optical system is composed of two spherical lenses. (a) Camera composed of a planar detector and (b) camera composed of a curved detector.

Fig. 4.
Fig. 4.

Infrared images captured by (a) the camera composed of a planar detector and (b) the camera composed of a curved focal plane.

Fig. 5.
Fig. 5.

Experimental optical characterization: Contrast Transfer Function of (a) planar detector camera and (b) curved detector camera. T: Tangential CTF and S: Sagittal CTF.

Fig. 6.
Fig. 6.

Theory and experimental Modulation Transfer Functions (MTF) with the distinction T: Tangential curves and S: Sagittal. (a) planar detector camera and (b) curved detector camera.

Tables (1)

Tables Icon

Table 1. Electrical Test Showing the Percentage of Variation Between Bulk, Standard Bolometer, and the Curved Device

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MTF(υ)=π4(CTF(υ)+CTF(3υ)3CTF(5υ)5),
sinc(υ)=sin(0.025πυ)0.025πυ.

Metrics