Abstract

In this paper we present a procedure for the selection of the minimal dc reverse bias voltage of a high-speed optically triggered sampling circuit. The optically triggered sampling circuit is based on a PIN photodiode. A set of expressions that includes the optical power dependence of the current passing through the PIN photodiode is derived. Theoretical results of the procedure are experimentally verified with practical measurements obtained from a 3 giga samples per second (GS/s) and a 20GS/s sampling circuit implemented with commercial PIN photodiodes. Reductions in the signal-to-noise and distortion ratio of 37.28 and 6.9 dBs, as well as increments in the spurious free dynamic range of 31 and 19 dBs in the sampled signals, are respectively averted by the selection of the minimal reverse bias.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Valley, “Photonics analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [CrossRef]
  2. S. Oda and A. Maruta, “A novel quantization scheme by slicing super-continuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17, 465–467 (2005).
    [CrossRef]
  3. K. Ikeda, J. Abdul, S. Namiki, and K. Kitayama, “Optical quantization and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac Interferometer,” Opt. Express 13, 4296–4302 (2005).
    [CrossRef]
  4. C. Villa, P. Kumavor, and E. Donkor, “Demonstration of a self-synchronized polyphase sampling and demultiplexing scheme for radio-frequency analog signals,” IEEE Photon. Technol. Lett. 20, 452–454 (2008).
    [CrossRef]
  5. C. Villa, P. Kumavor, and E. Donkor, “Optoelectronics encoder for a 12 bits 1.28-GSPS analog-to-digital converter,” IEEE Photon. Technol. Lett. 21, 1238–1240 (2009).
    [CrossRef]
  6. L. Jia-Ming, Photonic Devices (Cambridge, 2005).
  7. J. Roux, J. Delord, and J. Coutaz, “RF frequency response of photoconductive samplers,” IEEE J. Quantum Electron. 47, 223–229 (2011).
    [CrossRef]
  8. G. Hiller and R. Caverly, “The reverse bias requirement for PIN diodes in high power switches and phase shifters,” in IEEE MTT-S Int. Microwave Symp. Dig.3, 1321–1324 (1990).
  9. M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
    [CrossRef]
  10. R. H. Caverly and G. Hiller, “Establishing the minimum reverse bias for a p-i-n diode in a high-power switch,” IEEE Trans. Micro. Theory Tech. 38, 1938–1943 (1990).
    [CrossRef]

2011 (1)

J. Roux, J. Delord, and J. Coutaz, “RF frequency response of photoconductive samplers,” IEEE J. Quantum Electron. 47, 223–229 (2011).
[CrossRef]

2009 (1)

C. Villa, P. Kumavor, and E. Donkor, “Optoelectronics encoder for a 12 bits 1.28-GSPS analog-to-digital converter,” IEEE Photon. Technol. Lett. 21, 1238–1240 (2009).
[CrossRef]

2008 (1)

C. Villa, P. Kumavor, and E. Donkor, “Demonstration of a self-synchronized polyphase sampling and demultiplexing scheme for radio-frequency analog signals,” IEEE Photon. Technol. Lett. 20, 452–454 (2008).
[CrossRef]

2007 (1)

2005 (2)

S. Oda and A. Maruta, “A novel quantization scheme by slicing super-continuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17, 465–467 (2005).
[CrossRef]

K. Ikeda, J. Abdul, S. Namiki, and K. Kitayama, “Optical quantization and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac Interferometer,” Opt. Express 13, 4296–4302 (2005).
[CrossRef]

1990 (1)

R. H. Caverly and G. Hiller, “Establishing the minimum reverse bias for a p-i-n diode in a high-power switch,” IEEE Trans. Micro. Theory Tech. 38, 1938–1943 (1990).
[CrossRef]

1982 (1)

M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
[CrossRef]

Abdul, J.

Caulton, M.

M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
[CrossRef]

Caverly, R.

G. Hiller and R. Caverly, “The reverse bias requirement for PIN diodes in high power switches and phase shifters,” in IEEE MTT-S Int. Microwave Symp. Dig.3, 1321–1324 (1990).

Caverly, R. H.

R. H. Caverly and G. Hiller, “Establishing the minimum reverse bias for a p-i-n diode in a high-power switch,” IEEE Trans. Micro. Theory Tech. 38, 1938–1943 (1990).
[CrossRef]

Coutaz, J.

J. Roux, J. Delord, and J. Coutaz, “RF frequency response of photoconductive samplers,” IEEE J. Quantum Electron. 47, 223–229 (2011).
[CrossRef]

Delord, J.

J. Roux, J. Delord, and J. Coutaz, “RF frequency response of photoconductive samplers,” IEEE J. Quantum Electron. 47, 223–229 (2011).
[CrossRef]

Donkor, E.

C. Villa, P. Kumavor, and E. Donkor, “Optoelectronics encoder for a 12 bits 1.28-GSPS analog-to-digital converter,” IEEE Photon. Technol. Lett. 21, 1238–1240 (2009).
[CrossRef]

C. Villa, P. Kumavor, and E. Donkor, “Demonstration of a self-synchronized polyphase sampling and demultiplexing scheme for radio-frequency analog signals,” IEEE Photon. Technol. Lett. 20, 452–454 (2008).
[CrossRef]

Gombar, A.

M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
[CrossRef]

Hiller, G.

R. H. Caverly and G. Hiller, “Establishing the minimum reverse bias for a p-i-n diode in a high-power switch,” IEEE Trans. Micro. Theory Tech. 38, 1938–1943 (1990).
[CrossRef]

G. Hiller and R. Caverly, “The reverse bias requirement for PIN diodes in high power switches and phase shifters,” in IEEE MTT-S Int. Microwave Symp. Dig.3, 1321–1324 (1990).

Ikeda, K.

Jia-Ming, L.

L. Jia-Ming, Photonic Devices (Cambridge, 2005).

Kitayama, K.

Kumavor, P.

C. Villa, P. Kumavor, and E. Donkor, “Optoelectronics encoder for a 12 bits 1.28-GSPS analog-to-digital converter,” IEEE Photon. Technol. Lett. 21, 1238–1240 (2009).
[CrossRef]

C. Villa, P. Kumavor, and E. Donkor, “Demonstration of a self-synchronized polyphase sampling and demultiplexing scheme for radio-frequency analog signals,” IEEE Photon. Technol. Lett. 20, 452–454 (2008).
[CrossRef]

Maruta, A.

S. Oda and A. Maruta, “A novel quantization scheme by slicing super-continuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17, 465–467 (2005).
[CrossRef]

Namiki, S.

Oda, S.

S. Oda and A. Maruta, “A novel quantization scheme by slicing super-continuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17, 465–467 (2005).
[CrossRef]

Rosen, A.

M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
[CrossRef]

Roux, J.

J. Roux, J. Delord, and J. Coutaz, “RF frequency response of photoconductive samplers,” IEEE J. Quantum Electron. 47, 223–229 (2011).
[CrossRef]

Stabile, P. J.

M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
[CrossRef]

Valley, C.

Villa, C.

C. Villa, P. Kumavor, and E. Donkor, “Optoelectronics encoder for a 12 bits 1.28-GSPS analog-to-digital converter,” IEEE Photon. Technol. Lett. 21, 1238–1240 (2009).
[CrossRef]

C. Villa, P. Kumavor, and E. Donkor, “Demonstration of a self-synchronized polyphase sampling and demultiplexing scheme for radio-frequency analog signals,” IEEE Photon. Technol. Lett. 20, 452–454 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Roux, J. Delord, and J. Coutaz, “RF frequency response of photoconductive samplers,” IEEE J. Quantum Electron. 47, 223–229 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Oda and A. Maruta, “A novel quantization scheme by slicing super-continuum spectrum for all-optical analog-to-digital conversion,” IEEE Photon. Technol. Lett. 17, 465–467 (2005).
[CrossRef]

C. Villa, P. Kumavor, and E. Donkor, “Demonstration of a self-synchronized polyphase sampling and demultiplexing scheme for radio-frequency analog signals,” IEEE Photon. Technol. Lett. 20, 452–454 (2008).
[CrossRef]

C. Villa, P. Kumavor, and E. Donkor, “Optoelectronics encoder for a 12 bits 1.28-GSPS analog-to-digital converter,” IEEE Photon. Technol. Lett. 21, 1238–1240 (2009).
[CrossRef]

IEEE Trans. Micro. Theory Tech. (2)

M. Caulton, A. Rosen, P. J. Stabile, and A. Gombar, “P-I-N diodes for low-frequency high-power switching applications,” IEEE Trans. Micro. Theory Tech. 30, 875–882 (1982).
[CrossRef]

R. H. Caverly and G. Hiller, “Establishing the minimum reverse bias for a p-i-n diode in a high-power switch,” IEEE Trans. Micro. Theory Tech. 38, 1938–1943 (1990).
[CrossRef]

Opt. Express (2)

Other (2)

L. Jia-Ming, Photonic Devices (Cambridge, 2005).

G. Hiller and R. Caverly, “The reverse bias requirement for PIN diodes in high power switches and phase shifters,” in IEEE MTT-S Int. Microwave Symp. Dig.3, 1321–1324 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optically triggered sampling circuit based on a reverse-biased PIN photodiode: (a) schematic circuit; (b) operation characteristics.

Fig. 2.
Fig. 2.

Average optical power (Pav) applied to the PIN-PD versus PIN-PD resistance versus PIN-PD current.

Fig. 3.
Fig. 3.

Minimal dc reverse bias voltage (Vr) versus average optical power (Pav) applied to the PIN-PDs: (a) Fix peak-to-peak RF voltage of 2 V; (b) fix peak-to-peak RF voltage of 1 V.

Fig. 4.
Fig. 4.

Minimal dc reverse bias (Vr) versus the peak-to-peak RF voltage (VRF) for different average optical power impinging PIN-4.

Fig. 5.
Fig. 5.

Minimal dc reverse bias voltage (Vr) versus load resistor (RL) in the sampling circuit.

Fig. 6.
Fig. 6.

Oscilloscope photo of a 100 MHz, 2 V peak-to-peak, RF signal sampled at 3GS/s using PIN-2. (a) Vr=2.4V; (b) Vr=1.28V; (c) Vr=0.6V.

Fig. 7.
Fig. 7.

Oscilloscope photo of a 2.5 GHz, 300 mV peak-to-peak, RF signal sampled at 20GS/s using PIN-4: (a) Vr=220mV; (b) Vr=188mV; (c) Vr=100mV.

Fig. 8.
Fig. 8.

Calculated output spectrum (512-point FFT) of the 100 MHz, 2 V peak-to-peak input signal sampled at 3GS/s: (a) Vr1.28V; (b) Vr<1.28V.

Fig. 9.
Fig. 9.

Calculated output spectrum (512-point FFT) of the 2.5 GHz, 300 mV peak-to-peak input signal sampled at 20GS/s: (a) Vr188mV; (b) Vr<188mV.

Tables (2)

Tables Icon

Table 1. Relevant Devices Characteristics

Tables Icon

Table 2. Typical Values Used in the Calculations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Id=IRFcos(ωt)+Idc+Iph+Is.
Q=Idcτ+IRFτ1+(τω)2(cosωt+τωcosωt),
GIdcqAnτ(μe+μh)W+IRFqAnτ(nμe+pμh)W1+(τω)2cos(ωt+Φ),
IRF=2qAneμeW1+(τω)2VRFcos(ωt+Φ),
Idc=2qAneμeWVdc,
Id=2qAneμeW[VRFcos(ωt+Φ)1+(τω)2+Vdc]+PavR+Is,
[Vdc+VRF]=[IdPavRIs]W2qAneμeVRF(cos(ωt+Φ)1+(τω)21).
Vr=VD+IdRL,
Vdc=12VRF+IdRL,
[Vdc+VRF]=1.5VRF+IdRL.
Id=2VRFqAneμe[cos(ωt+Φ)(1+(ωτ)2)1/2+12]+W(PavR+Is)W+2RLqAneμe.

Metrics