Abstract

We report here a narrowband high-spectral resolution sodium temperature/wind lidar recently developed at the University of Science and Technology of China (USTC) in Hefei, China (31.5 °N, 117 °E). Patterned after the Colorado State University (CSU) narrowband sodium lidar with a dye laser-based transmitter, the USTC sodium temperature/wind lidar was deployed with a number of technical improvements that facilitate automation and ease of operation; these include a home constructed pulsed dye amplifier (PDA), a beam-steering system, a star-tracking program, and an electronic timing control. With the averaged power of 1.2W output from PDA and the receiving telescope diameter of 0.76 m, our lidar system has a power aperture product of 0.55Wm2 and is comparable to the CSU and the University of Illinois at Urbana-Champaign (UIUC) sodium lidar systems. The uncertainties of typical measurements induced by photon noise and laser locking fluctuation for the temperature and wind with a 2 km vertical and 15 min temporal resolutions under the nighttime clear sky condition are estimated to be 1.0K and 1.5m/s, respectively, at the sodium peak (e.g., 91 km), and 8 K and 10m/s, respectively, at both sodium layer edges (e.g., 81 km and 105 km). The USTC narrowband sodium lidar has been operated regularly during the night since November 2011. Using the initial data collected, we demonstrate the reliability and suitability of these high resolution and precision datasets for studying the wave perturbations in the mesopause region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86, 9707–9714 (1981).
    [CrossRef]
  2. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
    [CrossRef]
  3. J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophy. Monog. Ser. 87, 67–87 (1995).
  4. G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
    [CrossRef]
  5. G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response,” J. Geophys. Res. 116, A00H12 (2011).
    [CrossRef]
  6. C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
    [CrossRef]
  7. X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.
  8. C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
    [CrossRef]
  9. M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
    [CrossRef]
  10. M. C. W. Sandford and A. J. Gibson, “Laser radar measurements of the atmospheric sodium layer,” J. Atmos. Terr. Phys. 32, 1423–1430 (1970).
    [CrossRef]
  11. R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
    [CrossRef]
  12. V. W. J. H. Kirchhoff and B. R. Clemesha, “Atmospheric sodium measurements at 238 S,” J. Atmos. Terr. Phys. 35, 1493–1498 (1973).
    [CrossRef]
  13. A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
    [CrossRef]
  14. K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  15. R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
    [CrossRef]
  16. U. von Zahn and W. Meyer, “Mesopause temperatures in polar summer,” J. Geophys. Res. 94, 14647–14651 (1989).
    [CrossRef]
  17. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
    [CrossRef]
  18. R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
    [CrossRef]
  19. C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
    [CrossRef]
  20. R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
    [CrossRef]
  21. C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998).
    [CrossRef]
  22. A. Z. Liu and C. S. Gardner, “Vertical heat and constituent transport in the mesopause region by dissipating gravity waves at Maui, Hawaii (20.7 °N), and Starfire Optical Range, New Mexico (35 °N),” J. Geophys. Res. 110, D09S13 (2005).
    [CrossRef]
  23. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
    [CrossRef]
  24. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
    [CrossRef]
  25. J. D. Vance, C. Y. She, and H. Moosmuller, “Continuous-wave, all solid- tate, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998).
    [CrossRef]
  26. C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
    [CrossRef]
  27. U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
    [CrossRef]
  28. J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
    [CrossRef]
  29. J. Höffner and J. Lautenbach, “Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar,” Opt. Lett. 34, 1351–1353 (2009).
    [CrossRef]
  30. K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
    [CrossRef]
  31. J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009).
    [CrossRef]
  32. T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009).
    [CrossRef]
  33. I. S. McDermid, T. D. Walsh, A. Deslis, and M. While, “Optical systems design for a stratospheric lidar system,” Appl. Opt. 34, 6201–6210 (1995).
    [CrossRef]
  34. B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
    [CrossRef]
  35. C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric application,” Appl. Opt. 34, 1063–1075 (1995).
    [CrossRef]
  36. P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
    [CrossRef]

2011

G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response,” J. Geophys. Res. 116, A00H12 (2011).
[CrossRef]

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
[CrossRef]

2009

2005

B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
[CrossRef]

A. Z. Liu and C. S. Gardner, “Vertical heat and constituent transport in the mesopause region by dissipating gravity waves at Maui, Hawaii (20.7 °N), and Starfire Optical Range, New Mexico (35 °N),” J. Geophys. Res. 110, D09S13 (2005).
[CrossRef]

2004

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

2003

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[CrossRef]

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[CrossRef]

2002

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

1998

J. D. Vance, C. Y. She, and H. Moosmuller, “Continuous-wave, all solid- tate, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998).
[CrossRef]

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998).
[CrossRef]

1996

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

1995

1994

C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

1992

1991

R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

1990

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

1989

U. von Zahn and W. Meyer, “Mesopause temperatures in polar summer,” J. Geophys. Res. 94, 14647–14651 (1989).
[CrossRef]

1988

R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

1985

K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

1981

R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86, 9707–9714 (1981).
[CrossRef]

1979

A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

1973

V. W. J. H. Kirchhoff and B. R. Clemesha, “Atmospheric sodium measurements at 238 S,” J. Atmos. Terr. Phys. 35, 1493–1498 (1973).
[CrossRef]

1972

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

1970

M. C. W. Sandford and A. J. Gibson, “Laser radar measurements of the atmospheric sodium layer,” J. Atmos. Terr. Phys. 32, 1423–1430 (1970).
[CrossRef]

1969

M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Acott, P.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

Acott, P. E.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009).
[CrossRef]

Alexander, M. J.

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[CrossRef]

Alvarez, R. J.

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Arnold, D. E.

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

Arnold, K. S.

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[CrossRef]

Beig, G.

G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response,” J. Geophys. Res. 116, A00H12 (2011).
[CrossRef]

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Bhattachacharyya, S. K.

A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

Bills, R. E.

C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[CrossRef]

R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Bowman, M. R.

M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Bremer, J.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Chu, X.

J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009).
[CrossRef]

X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.

Clemesha, B. R.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

V. W. J. H. Kirchhoff and B. R. Clemesha, “Atmospheric sodium measurements at 238 S,” J. Atmos. Terr. Phys. 35, 1493–1498 (1973).
[CrossRef]

Collins, R. L.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

Delgado, R.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Deslis, A.

Evans, W. E.

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

Fadnavis, S.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Ficklin, B. P.

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

Fomichev, V. I.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Forbes, J. M.

J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophy. Monog. Ser. 87, 67–87 (1995).

Franke, S. J.

R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

French, W. J. R.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Fricke, K. H.

K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Friedman, J. S.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Fritts, D. C.

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[CrossRef]

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

Gardner, C. S.

A. Z. Liu and C. S. Gardner, “Vertical heat and constituent transport in the mesopause region by dissipating gravity waves at Maui, Hawaii (20.7 °N), and Starfire Optical Range, New Mexico (35 °N),” J. Geophys. Res. 110, D09S13 (2005).
[CrossRef]

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998).
[CrossRef]

R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Gibson, A. J.

A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

M. C. W. Sandford and A. J. Gibson, “Laser radar measurements of the atmospheric sodium layer,” J. Atmos. Terr. Phys. 32, 1423–1430 (1970).
[CrossRef]

M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Gibson-Wilde, D.

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

Hake, R. D.

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

Harrell, S.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

Harrell, S. D.

Hedin, J.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Höffner, J.

J. Höffner and J. Lautenbach, “Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar,” Opt. Lett. 34, 1351–1353 (2009).
[CrossRef]

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

Huang, W.

J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009).
[CrossRef]

Jackson, D. W.

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

Kawahara, T. D.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
[CrossRef]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Keckhut, P.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Kirchhoff, V. W. J. H.

V. W. J. H. Kirchhoff and B. R. Clemesha, “Atmospheric sodium measurements at 238 S,” J. Atmos. Terr. Phys. 35, 1493–1498 (1973).
[CrossRef]

Kitahara, T.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Kobayashi, F.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Krueger, D. A.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009).
[CrossRef]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Latifi, H.

C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Lautenbach, J.

Li, T.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

Lindzen, R. S.

R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86, 9707–9714 (1981).
[CrossRef]

Liu, A. Z.

A. Z. Liu and C. S. Gardner, “Vertical heat and constituent transport in the mesopause region by dissipating gravity waves at Maui, Hawaii (20.7 °N), and Starfire Optical Range, New Mexico (35 °N),” J. Geophys. Res. 110, D09S13 (2005).
[CrossRef]

Liu, B.

Long, R. A.

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

Lowe, R. P.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Lübken, F. J.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

McDermid, I. S.

Meyer, W.

U. von Zahn and W. Meyer, “Mesopause temperatures in polar summer,” J. Geophys. Res. 94, 14647–14651 (1989).
[CrossRef]

Mlynczak, M. G.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Moosmuller, H.

Moosuller, H.

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

Neuber, R.

R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

Nomura, A.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Offermann, D.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Papen, G.

X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.

Raizada, S.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Remsberg, E. E.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Roble, R. G.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Saito, Y.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Sandford, M. C. W.

M. C. W. Sandford and A. J. Gibson, “Laser radar measurements of the atmospheric sodium layer,” J. Atmos. Terr. Phys. 32, 1423–1430 (1970).
[CrossRef]

M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

Scheer, J.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Semenov, A. I.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

She, C. Y.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[CrossRef]

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

J. D. Vance, C. Y. She, and H. Moosmuller, “Continuous-wave, all solid- tate, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998).
[CrossRef]

C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric application,” Appl. Opt. 34, 1063–1075 (1995).
[CrossRef]

C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[CrossRef]

R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

She, C.-Y.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

Shepherd, M. G.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Sherman, J. P.

Sigernes, F.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Smith, J. A.

J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009).
[CrossRef]

Stegman, J.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

Tan, B.

J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009).
[CrossRef]

Tepley, C. A.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Thomas, L.

A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

Tsutsumi, M.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

Vance, J. D.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

J. D. Vance, C. Y. She, and H. Moosmuller, “Continuous-wave, all solid- tate, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998).
[CrossRef]

Vance, Joe D.

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

Von der Gathen, P.

R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

von Zahn, U.

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

U. von Zahn and W. Meyer, “Mesopause temperatures in polar summer,” J. Geophys. Res. 94, 14647–14651 (1989).
[CrossRef]

R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Walsh, T. D.

While, M.

White, M. A.

Williams, B. P.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

Yan, Z.-A.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

Yang, W.

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998).
[CrossRef]

Yi, F.

Yu, C. M.

Yu, J. R.

C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric application,” Appl. Opt. 34, 1063–1075 (1995).
[CrossRef]

C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Yuan, T.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009).
[CrossRef]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

Yue, J.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009).
[CrossRef]

Zhou, Q. H.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

Appl. Opt.

Contemp. Phys.

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[CrossRef]

EOS Transactions, American Geophysical Union

C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002).
[CrossRef]

Geophys. Res. Lett.

U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002).
[CrossRef]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[CrossRef]

C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

J. Atmos. Sol. Terr. Phys.

P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011).
[CrossRef]

J. Atmos. Terr. Phys.

M. C. W. Sandford and A. J. Gibson, “Laser radar measurements of the atmospheric sodium layer,” J. Atmos. Terr. Phys. 32, 1423–1430 (1970).
[CrossRef]

V. W. J. H. Kirchhoff and B. R. Clemesha, “Atmospheric sodium measurements at 238 S,” J. Atmos. Terr. Phys. 35, 1493–1498 (1973).
[CrossRef]

K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Atoms. Sol.-Terr. Phys.

J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003).
[CrossRef]

J. Geophys. Res.

G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response,” J. Geophys. Res. 116, A00H12 (2011).
[CrossRef]

R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988).
[CrossRef]

U. von Zahn and W. Meyer, “Mesopause temperatures in polar summer,” J. Geophys. Res. 94, 14647–14651 (1989).
[CrossRef]

R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972).
[CrossRef]

R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991).
[CrossRef]

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998).
[CrossRef]

A. Z. Liu and C. S. Gardner, “Vertical heat and constituent transport in the mesopause region by dissipating gravity waves at Maui, Hawaii (20.7 °N), and Starfire Optical Range, New Mexico (35 °N),” J. Geophys. Res. 110, D09S13 (2005).
[CrossRef]

R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86, 9707–9714 (1981).
[CrossRef]

Nature

M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969).
[CrossRef]

A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979).
[CrossRef]

Opt. Eng.

R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Geophys.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003).
[CrossRef]

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[CrossRef]

The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophy. Monog. Ser.

J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophy. Monog. Ser. 87, 67–87 (1995).

Other

X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the USTC sodium temperature/wind lidar.

Fig. 2.
Fig. 2.

Schematic diagram of PDA.

Fig. 3.
Fig. 3.

An example of beam alignment with 2D contour plots in the rotate and tilt directions. The black plus signs denote the center of mass for the best alignment position. We note here that the color scales are different in all three plots.

Fig. 4.
Fig. 4.

Timing diagram of the USTC sodium lidar.

Fig. 5.
Fig. 5.

Typical nighttime raw photon profiles at three frequencies obtained from a 2 min (40 s for each of three frequencies) integration for east (a) and north channels (b) on November 22, 2011. The red, blue, and green curves denote the returning signals at the frequencies of D2a peak, +630MHz, and 630MHz, respectively.

Fig. 6.
Fig. 6.

Comparison of temperature measured by the USTC lidar and SABER near Hefei.

Fig. 7.
Fig. 7.

Vertical wind measurements on Oct. 16 (a) and 18 (b), 2011. The color curves represent the hourly mean profiles, while the black curves are nightly mean.

Fig. 8.
Fig. 8.

The contour plots of temperature (a), zonal wind (b), sodium number density (c), and meridional wind (d) with 2 km vertical and 15 min temporal resolutions on November 20, 2011.

Tables (2)

Tables Icon

Table 1. System Parameters of the USTC Narrowband Sodium Lidar

Tables Icon

Table 2. Characteristics of PDA Main Components

Metrics