Abstract

The development of high resolution division-of-focal-plane polarimeters in the visible spectrum allows real-time capture of two chief properties of interest, the degree of linear polarization and the angle of polarization. The accuracy of these two parameters can be influenced by a number of factors in the imaged scene, from the incident intensity and wavelength to the lens used for image capture. The alignment, transmission, and contrast ratios of the pixel matched filters also impact the measured parameters. A system of measurements is presented here that shows how these factors can determine the quality of a division-of-focal-plane polarimeter.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
    [CrossRef]
  2. M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
    [CrossRef]
  3. T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011).
    [CrossRef]
  4. H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comp. Vis. 28, 73–83 (1998).
    [CrossRef]
  5. M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
    [CrossRef]
  6. S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137–2153 (2006).
    [CrossRef]
  7. S. Shwartz, E. Namer, and Y. Schechner, “Blind haze separation,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (IEEE, 2006), pp. 1984–1991.
  8. D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.
  9. C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape and refractive index recovery from single-view polarisation images,” in Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1229–1236.
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef]
  11. D. Goldstein, Polarized Light, 3rd ed. (CRC, 2010).
  12. J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
    [CrossRef]
  13. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
    [CrossRef]
  14. P. Bhandari, K. J. Voss, and L. Logan, “An instrument to measure the downwelling polarized radiance distribution in the ocean,” Opt. Express 19, 17609–17620 (2011).
    [CrossRef]
  15. B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (20July1976).
  16. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [CrossRef]
  17. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
    [CrossRef]
  18. X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
    [CrossRef]
  19. S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
    [CrossRef]
  20. D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012).
    [CrossRef]
  21. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009).
    [CrossRef]
  22. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009).
    [CrossRef]
  23. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
    [CrossRef]
  24. S. Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” in Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2012), paper 1832.
  25. J. Nakamura, ed., Image Sensors and Signal Processing for Digital Still Cameras (CRC, 2006).
  26. T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE 8012, 80120H (2011).
    [CrossRef]
  27. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
    [CrossRef]
  28. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
    [CrossRef]

2012 (1)

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012).
[CrossRef]

2011 (6)

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011).
[CrossRef]

M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
[CrossRef]

P. Bhandari, K. J. Voss, and L. Logan, “An instrument to measure the downwelling polarized radiance distribution in the ocean,” Opt. Express 19, 17609–17620 (2011).
[CrossRef]

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[CrossRef]

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE 8012, 80120H (2011).
[CrossRef]

2010 (1)

2009 (5)

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[CrossRef]

J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009).
[CrossRef]

B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009).
[CrossRef]

2008 (3)

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

2007 (1)

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

2006 (2)

2005 (1)

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[CrossRef]

1998 (1)

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comp. Vis. 28, 73–83 (1998).
[CrossRef]

Anastasiadou, M.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (20July1976).

Bermak, A.

X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

Bhandari, P.

Black, W. T.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Boger, J. K.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Boussaid, F.

X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

Bowers, D. L.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Chen, H.

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comp. Vis. 28, 73–83 (1998).
[CrossRef]

Chenault, D.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

Chenault, D. B.

Chigrinov, V.

X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

Clement, D.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Cohen, H.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Creusere, C.

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011).
[CrossRef]

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

Dereniak, E. L.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012).
[CrossRef]

Dreyfuss, J.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Engheta, N.

Fetrow, M. P.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Gao, S.

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[CrossRef]

S. Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” in Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2012), paper 1832.

Goldstein, D.

D. Goldstein, Polarized Light, 3rd ed. (CRC, 2010).

Goldstein, D. L.

Gruev, V.

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[CrossRef]

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE 8012, 80120H (2011).
[CrossRef]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
[CrossRef]

S. Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” in Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2012), paper 1832.

Hancock, E.

C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape and refractive index recovery from single-view polarisation images,” in Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1229–1236.

Hara, K.

D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.

Hubbs, J. E.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Huynh, B.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Huynh, C. P.

C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape and refractive index recovery from single-view polarisation images,” in Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1229–1236.

Ikeuchi, K.

D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.

Krishna, T.

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011).
[CrossRef]

LaCasse, C. F.

Laude-Boulesteix, B.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Liége, F.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Lin, S.-S.

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

Logan, L.

Martino, A. D.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Miller, D. A.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012).
[CrossRef]

Miyazaki, D.

D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.

Namer, E.

S. Shwartz, E. Namer, and Y. Schechner, “Blind haze separation,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (IEEE, 2006), pp. 1984–1991.

Nazac, A.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Neel, V.

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[CrossRef]

Noda, T.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

Ohta, J.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Ortega, S. E.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Perkins, R.

Pezzaniti, J. L.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[CrossRef]

Pezzaniti, J. P.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

Pugh, E. N.

Quang, N.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Ratliff, B. M.

J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009).
[CrossRef]

B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009).
[CrossRef]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Reinhardt, J.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

Robles-Kelly, A.

C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape and refractive index recovery from single-view polarisation images,” in Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1229–1236.

Roche, M.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

Salomatina-Motts, E.

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[CrossRef]

San Segundo Bello, D.

M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
[CrossRef]

Sarkar, M.

M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
[CrossRef]

Sasagawa, K.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Sato, S.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Schechner, Y.

S. Shwartz, E. Namer, and Y. Schechner, “Blind haze separation,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (IEEE, 2006), pp. 1984–1991.

Schultz, H.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

Schwartz, L.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

Shaw, J. A.

Shishido, S.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

Shwartz, S.

S. Shwartz, E. Namer, and Y. Schechner, “Blind haze separation,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (IEEE, 2006), pp. 1984–1991.

Tan, R.

D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.

Theuwissen, A.

M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
[CrossRef]

Tokuda, T.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Tyo, J. S.

van Hoof, C.

M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
[CrossRef]

Voelz, D.

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011).
[CrossRef]

Voss, K. J.

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

Wellems, L. D.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Wilson, D. W.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012).
[CrossRef]

Wolff, L. B.

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comp. Vis. 28, 73–83 (1998).
[CrossRef]

Yamada, H.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Yaroslavskaya, A.

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[CrossRef]

Yemelyanov, K. M.

York, T.

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE 8012, 80120H (2011).
[CrossRef]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
[CrossRef]

Zhao, X.

X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

Electron. Lett. (1)

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

IEEE Sens. J. (1)

M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011).
[CrossRef]

IEEE Trans. Image Process. (1)

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011).
[CrossRef]

Int. J. Comp. Vis. (1)

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comp. Vis. 28, 73–83 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[CrossRef]

Opt. Eng. (2)

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012).
[CrossRef]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Spectrosc. (1)

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[CrossRef]

Phys. Stat. Sol. C (1)

M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008).
[CrossRef]

Proc. SPIE (3)

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008).
[CrossRef]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[CrossRef]

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE 8012, 80120H (2011).
[CrossRef]

Other (7)

B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (20July1976).

S. Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” in Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2012), paper 1832.

J. Nakamura, ed., Image Sensors and Signal Processing for Digital Still Cameras (CRC, 2006).

D. Goldstein, Polarized Light, 3rd ed. (CRC, 2010).

S. Shwartz, E. Namer, and Y. Schechner, “Blind haze separation,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (IEEE, 2006), pp. 1984–1991.

D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.

C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape and refractive index recovery from single-view polarisation images,” in Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1229–1236.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

Optical setup to measure for AoPs, fields-of-view, and spectra.

Fig. 2.
Fig. 2.

Experimental setup to measure degree of linear polarization (PSA is the polarization state analyzer).

Fig. 3.
Fig. 3.

Experimental setup to measure spectral response.

Fig. 4.
Fig. 4.

Average filter response across pixel array, λ=570nm.

Fig. 5.
Fig. 5.

Filter orientations.

Fig. 6.
Fig. 6.

Computed DoLP for incident AoPs at λ=570nm.

Fig. 7.
Fig. 7.

Captured frame at 650 nm, input DoLP at approx. 0.0.

Fig. 8.
Fig. 8.

Histogram of intensities at DoLP of approx. 0.0.

Fig. 9.
Fig. 9.

Histogram of extinction ratios in 200×200 pixel neighborhood.

Fig. 10.
Fig. 10.

Linear fit of AoP at λ=570nm.

Fig. 11.
Fig. 11.

AoP RMS error for various photon counts.

Fig. 12.
Fig. 12.

Extinction ratio versus wavelength.

Fig. 13.
Fig. 13.

Degree of linear polarization over the visible spectrum.

Fig. 14.
Fig. 14.

RMS error of AoP for visible wavelengths.

Fig. 15.
Fig. 15.

RMS error of DoLP for different wavelengths and intensities.

Fig. 16.
Fig. 16.

DoLP sensitivity, λ=650nm.

Fig. 17.
Fig. 17.

SNR of array, split by pixel orientation, λ=650nm.

Fig. 18.
Fig. 18.

DoLP as sensor changes orientation with regard to incident light.

Fig. 19.
Fig. 19.

AoP error as sensor changes orientation with regard to incident light.

Fig. 20.
Fig. 20.

Extinction ratio as a function of camera orientation.

Tables (1)

Tables Icon

Table 1. Performance Summary of Tested DoFP Sensor

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S=[S0S1S2]=[12(I0°+I45°+I90°+I135°)I0°I90°I45°I135°].
DoLP=S12+S22S0.
AoP=12arctan(S2S1).
AoP=12tan1((px,452px,1352+py,452py,1352)+(px,452+px,1352py,452py,1352)sin(2θ)(px,02px,902+py,02py,902)+(px,02+px,902py,02py,902)cos(2θ)).
DoLP=ImaxIminImax+Imin.

Metrics