Abstract

A single channel asymmetric color image encryption scheme is proposed that uses an amplitude- and phase- truncation approach with interference of polarized wavefronts. Instead of commonly used random phase masks, wavelength-dependent structured phase masks (SPM) are used in the fractional Fourier transform domain for image encoding. The primary color components bonded with different SPMs are combined into one grayscale image using convolution. We then apply the amplitude and phase truncation to the fractional spectrum, which helps generate unique decryption keys. The encrypted image bonded with a different SPM is then encoded into a polarization selective diffractive optical element. The proposed scheme alleviates the alignment problem of interference and does not need iterative encoding and offers multiple levels of security. The effect of a special attack to the proposed asymmetric cryptosystem has been studied. To measure the effectiveness of the proposed method, we calculated the mean square error between the original and the decrypted images. The computer simulation results support the proposed idea.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription