Abstract

This work describes the development of an optical sensor for measurement of vibration without contact. The realized vibrometer is based on real-time digital elaboration of the signal obtained by a self-mixing interferometer, with an embedded autofocus system. Two different algorithms are implemented, for the continuous working on diffusive surfaces, with different levels of optical reflectivity. Thanks to the autofocus and the digital processing, the proposed sensor is easy to use and requires no assistance of a skilled operator.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
    [CrossRef]
  2. S. Donati, Electro-Optical Instrumentation—Sensing and Measuring with Lasers (Prentice Hall, 2004).
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).
  4. G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003).
    [CrossRef]
  5. M. Norgia and C. Svelto, “Novel measurement method for signal recovery in optical vibrometer,” IEEE Trans. Instrum. Meas. 57, 1703–1707 (2008).
    [CrossRef]
  6. S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45, 7264–7268 (2006).
    [CrossRef]
  7. M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
    [CrossRef]
  8. P. A. Roos, M. Stephens, and C. E. Wieman, “Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode,” Appl. Opt. 35, 6754–6761 (1996).
    [CrossRef]
  9. U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35, 1278–1280 (2010).
    [CrossRef]
  10. M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010).
    [CrossRef]
  11. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33, 5628–5641 (1994).
    [CrossRef]
  12. M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
    [CrossRef]
  13. S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
    [CrossRef]
  14. M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001).
    [CrossRef]
  15. Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011).
    [CrossRef]
  16. C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
    [CrossRef]
  17. M. Norgia and S. Donati, “A displacement-measuring instrument utilizing self-mixing interferometry,” IEEE Trans. Instrum. Meas. 52, 1765–1770 (2003).
    [CrossRef]
  18. M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).
    [CrossRef]
  19. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007).
    [CrossRef]
  20. M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).
    [CrossRef]
  21. M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007).
    [CrossRef]
  22. G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028–1030 (2000).
    [CrossRef]
  23. I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
    [CrossRef]

2012 (2)

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[CrossRef]

2011 (2)

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011).
[CrossRef]

2010 (3)

U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35, 1278–1280 (2010).
[CrossRef]

M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010).
[CrossRef]

2008 (1)

M. Norgia and C. Svelto, “Novel measurement method for signal recovery in optical vibrometer,” IEEE Trans. Instrum. Meas. 57, 1703–1707 (2008).
[CrossRef]

2007 (2)

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007).
[CrossRef]

M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007).
[CrossRef]

2006 (2)

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45, 7264–7268 (2006).
[CrossRef]

2003 (2)

M. Norgia and S. Donati, “A displacement-measuring instrument utilizing self-mixing interferometry,” IEEE Trans. Instrum. Meas. 52, 1765–1770 (2003).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003).
[CrossRef]

2002 (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
[CrossRef]

2001 (2)

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).
[CrossRef]

M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001).
[CrossRef]

2000 (2)

G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028–1030 (2000).
[CrossRef]

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

1996 (1)

1994 (1)

Aarnoudse, J. G.

Atashkhooei, R.

Bes, C.

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

Bony, F.

Bosch, T.

U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35, 1278–1280 (2010).
[CrossRef]

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
[CrossRef]

Bozzi-Pietra, S.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003).
[CrossRef]

Chicharo, J. F.

D’Alessandro, D.

M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001).
[CrossRef]

Dassel, A. C. M.

de Mul, F. F. M.

Dellacà, R.

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

Donati, S.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007).
[CrossRef]

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45, 7264–7268 (2006).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003).
[CrossRef]

M. Norgia and S. Donati, “A displacement-measuring instrument utilizing self-mixing interferometry,” IEEE Trans. Instrum. Meas. 52, 1765–1770 (2003).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
[CrossRef]

M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001).
[CrossRef]

S. Donati, Electro-Optical Instrumentation—Sensing and Measuring with Lasers (Prentice Hall, 2004).

Fan, Y.

Giuliani, G.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007).
[CrossRef]

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45, 7264–7268 (2006).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
[CrossRef]

G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028–1030 (2000).
[CrossRef]

Graaff, R.

Greve, J.

Ito, S.

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

Koelink, M. H.

Lai, G.

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).
[CrossRef]

Lovera, M.

M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
[CrossRef]

Magnani, A.

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).
[CrossRef]

Milesi, I.

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

Norgia, M.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[CrossRef]

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).
[CrossRef]

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010).
[CrossRef]

M. Norgia and C. Svelto, “Novel measurement method for signal recovery in optical vibrometer,” IEEE Trans. Instrum. Meas. 57, 1703–1707 (2008).
[CrossRef]

M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007).
[CrossRef]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007).
[CrossRef]

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45, 7264–7268 (2006).
[CrossRef]

M. Norgia and S. Donati, “A displacement-measuring instrument utilizing self-mixing interferometry,” IEEE Trans. Instrum. Meas. 52, 1765–1770 (2003).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
[CrossRef]

M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001).
[CrossRef]

G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028–1030 (2000).
[CrossRef]

Özdemir, S. K.

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

Pesatori, A.

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[CrossRef]

M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010).
[CrossRef]

M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).

Plantier, G.

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

Pompilio, P. P.

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

Rakic, A. D.

Roos, P. A.

Rovati, L.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010).
[CrossRef]

Royo, S.

Shinohara, S.

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

Stephens, M.

Svelto, C.

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

M. Norgia and C. Svelto, “Novel measurement method for signal recovery in optical vibrometer,” IEEE Trans. Instrum. Meas. 57, 1703–1707 (2008).
[CrossRef]

M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007).
[CrossRef]

Takamiya, S.

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

Tanelli, M.

M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
[CrossRef]

Wang, M.

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).
[CrossRef]

Weijers, A. L.

Wieman, C. E.

Xi, J.

Yoshida, H.

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

Yu, Y.

Zabit, U.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028–1030 (2000).
[CrossRef]

IEEE Sens. J. (1)

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012).
[CrossRef]

IEEE Trans. Instrum. Meas. (9)

S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000).
[CrossRef]

I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011).
[CrossRef]

M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007).
[CrossRef]

M. Norgia and C. Svelto, “Novel measurement method for signal recovery in optical vibrometer,” IEEE Trans. Instrum. Meas. 57, 1703–1707 (2008).
[CrossRef]

M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010).
[CrossRef]

M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010).
[CrossRef]

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

M. Norgia and S. Donati, “A displacement-measuring instrument utilizing self-mixing interferometry,” IEEE Trans. Instrum. Meas. 52, 1765–1770 (2003).
[CrossRef]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).
[CrossRef]

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).
[CrossRef]

Other (2)

S. Donati, Electro-Optical Instrumentation—Sensing and Measuring with Lasers (Prentice Hall, 2004).

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Setup of the self-mixing interferometer.

Fig. 2.
Fig. 2.

Self-mixing signal acquired by the transimpedance amplifier, corresponding to a target moving at constant speed (4mm/s).

Fig. 3.
Fig. 3.

Autofocus process: during a mechanical translation of the collimating lens, the maximum fringe amplitude is detected.

Fig. 4.
Fig. 4.

Scheme of the peak derivation for chosing the best algorithm.

Fig. 5.
Fig. 5.

Comparison between classical derivative signal algorithm: A. interfometric signal; B. signal elaborated with a simple derivative algorithm; C. signal elaborated with the double-derivative algorithm.

Fig. 6.
Fig. 6.

Unwrap algorithm: self-mixing signal for a C>1 (upper trace); ideal reconstructed displacement obtained eliminating the jumps between consecutive fringes (lower trace).

Fig. 7.
Fig. 7.

Typical self-mixing signal elaborated by Eq. (3).

Fig. 8.
Fig. 8.

Two self-mixing signals acquired in two different directions at the same optical feedback (C0.5) (A. δ30%; B. δ70%).

Fig. 9.
Fig. 9.

Reconstructions of target displacement utilizing unwrap algorithm (middle trace), in correspondence to the interferometric signal of the upper trace. The lower trace shows the difference between the reconstructed displacement and a pure sine wave.

Fig. 10.
Fig. 10.

Two acquisitions of the interferometric signal corresponding to the same target vibration, with different initial phase.

Fig. 11.
Fig. 11.

Real-time displacement reconstruction in correspondence to the interferometric signals of Fig. 10.

Fig. 12.
Fig. 12.

Reconstructions of target displacement with duty cycle algorithm, lower trace, in correspondance to the interferometric signal in weak feedback optical condition (C0.5), upper trace.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P(ϕ)=P0[1+mF(ϕ)],
CsReff.
Vout=Vout_prec+K·|ViVbVaVb|.
δ=Tu/(Tu+Td),

Metrics