Abstract

In this study, we investigate methods to optimize the design of a panoramic annular lens (PAL) system. The design details of a PAL surveillance system, an anamorphic PAL surveillance system, a phone camera with a PAL attachment, and a PAL endoscope system are described. All these designs are optimized using a standard optical software package (Zemax). The results combine very good image quality with a modulation transfer function above 0.3, which is within the cutoff frequency of sensor chips.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. J. Geng, “Method and apparatus for an omni-directional video surveillance system,” U.S. patent 7,940,299 B2 (10May2011).
  2. Z. J. Geng, “Method and apparatus for omnidirectional imaging,” U.S. patent 6,304,285 B1 (16October2001).
  3. Z. J. Geng, “Omni-directional camera,” U.S. patent D436,612 S (12January2001).
  4. Z. J. Geng, “Method and apparatus for omnidirectional three dimensional imaging,” U.S. patent 6,744,569 B2 (1June2004).
  5. P. Greguss, “Panoramic imaging block for three-dimensional space,” U.S. patent 4,566,763 (28January1986).
  6. V. A. Solomatin, “A panoramic video camera,” J. Opt. Technol. 74, 815–817 (2007).
    [CrossRef]
  7. D. L. Lehner, A. G. Richter, and D. R. Matthys, “Characterization of the panoramic annular lens,” Exp. Mech. 36, 333–338 (1996).
    [CrossRef]
  8. L. Czuni, B. Vagvolgyi, and T. Sziranyi, “A compact panoramic visual sensor for intelligent applications,” in Proceedings of the 4th Asian Conference on Computer Vision (ACCV2000) (IEEE, 2000), pp. 258–263.
  9. I. Kopilovic, B. Vagvolgyi, and T. Sziranyi, “Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection,” in Proceedings of the International Conference on Pattern Recognition (ICPR’00) (2000), Vol. 4, pp. 714–717.
  10. S. Niu, J. Bai, and X.-Y. Hou, “Design of a panoramic annular lens with a long focal length,” Appl. Opt. 46, 7850–7857 (2007).
    [CrossRef]
  11. Z. Huang, J. Bai, and X. Y. Hou, “Design of panoramic stereo imaging with single optical system,” Opt. Express 20, 6085–6096 (2012).
    [CrossRef]
  12. T. Ma, J. Yu, and P. Liang, “Design of a freeform varifocal panoramic optical system with specified annular center of field of view,” Opt. Express 19, 3843–3853 (2011).
    [CrossRef]
  13. T. Togino, “Optical system,” U.S. patent 0013191 A1(17January2008).
  14. E. P. Wallerstein, “Panoramic imaging system,” U.S. patent US 2004/0252384 A1 (16December2004).
  15. S. Trubko, “Super wide-angle panoramic imaging apparatus,” U.S. patent 6,611,282 B1 (26August2003).
  16. J. Hoogland, “Panoramic imaging arrangement,” U.S. patent 0003673 A1 (10January2002).
  17. X. Xiao, G.-G. Yang, and J. Bai, “Enhancement of panoramic image resolution based on swift interpolation of Bezier surface,” Proc. SPIE 6279, 627931 (2007).
    [CrossRef]
  18. H. R. Fallah, “Higher order pupil aberrations in wide angle and panoramic optical systems,” Proc. SPIE 2774, 342–351 (1996).
    [CrossRef]
  19. M. A. Pate, “Optical design and specification of telecentric optical systems,” Proc. SPIE 3482, 877–886 (1998).
    [CrossRef]
  20. V. N. Martynov, “New constructions of panoramic annular lenses: design principle and output characteristics analysis,” Proc. SPIE 71000, 71000O (2008).
    [CrossRef]
  21. S. Thibault, “Space telemetric panomorph imaging system for micro/nano satellite,” Proc. SPIE. 6958, 69580T (2007).
    [CrossRef]
  22. ZEMAX optical design program, user’s guide version 8.0, Focus Software, Inc. (1999).
  23. W.-J. Li, “Optical design of 5 mega pixel mobile phone lens,” Laser Optoelectron. Prog. 46, 56–59 (2009).
    [CrossRef]
  24. R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
    [CrossRef]
  25. S. B. Fair and J. A. Gilbert, “Panoramic endoscopy,” Proc. SPIE 1649, 203–207 (1992).
    [CrossRef]
  26. J. A. Gilbert, “Endoscopic inspection and measurement,” Proc. SPIE 1771, 106–112 (1992).
    [CrossRef]

2012 (1)

2011 (2)

T. Ma, J. Yu, and P. Liang, “Design of a freeform varifocal panoramic optical system with specified annular center of field of view,” Opt. Express 19, 3843–3853 (2011).
[CrossRef]

R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
[CrossRef]

2009 (1)

W.-J. Li, “Optical design of 5 mega pixel mobile phone lens,” Laser Optoelectron. Prog. 46, 56–59 (2009).
[CrossRef]

2008 (1)

V. N. Martynov, “New constructions of panoramic annular lenses: design principle and output characteristics analysis,” Proc. SPIE 71000, 71000O (2008).
[CrossRef]

2007 (4)

S. Thibault, “Space telemetric panomorph imaging system for micro/nano satellite,” Proc. SPIE. 6958, 69580T (2007).
[CrossRef]

X. Xiao, G.-G. Yang, and J. Bai, “Enhancement of panoramic image resolution based on swift interpolation of Bezier surface,” Proc. SPIE 6279, 627931 (2007).
[CrossRef]

S. Niu, J. Bai, and X.-Y. Hou, “Design of a panoramic annular lens with a long focal length,” Appl. Opt. 46, 7850–7857 (2007).
[CrossRef]

V. A. Solomatin, “A panoramic video camera,” J. Opt. Technol. 74, 815–817 (2007).
[CrossRef]

1998 (1)

M. A. Pate, “Optical design and specification of telecentric optical systems,” Proc. SPIE 3482, 877–886 (1998).
[CrossRef]

1996 (2)

H. R. Fallah, “Higher order pupil aberrations in wide angle and panoramic optical systems,” Proc. SPIE 2774, 342–351 (1996).
[CrossRef]

D. L. Lehner, A. G. Richter, and D. R. Matthys, “Characterization of the panoramic annular lens,” Exp. Mech. 36, 333–338 (1996).
[CrossRef]

1992 (2)

S. B. Fair and J. A. Gilbert, “Panoramic endoscopy,” Proc. SPIE 1649, 203–207 (1992).
[CrossRef]

J. A. Gilbert, “Endoscopic inspection and measurement,” Proc. SPIE 1771, 106–112 (1992).
[CrossRef]

Armstrong, D.

R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
[CrossRef]

Bai, J.

Czuni, L.

L. Czuni, B. Vagvolgyi, and T. Sziranyi, “A compact panoramic visual sensor for intelligent applications,” in Proceedings of the 4th Asian Conference on Computer Vision (ACCV2000) (IEEE, 2000), pp. 258–263.

Deen, M. J.

R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
[CrossRef]

Fair, S. B.

S. B. Fair and J. A. Gilbert, “Panoramic endoscopy,” Proc. SPIE 1649, 203–207 (1992).
[CrossRef]

Fallah, H. R.

H. R. Fallah, “Higher order pupil aberrations in wide angle and panoramic optical systems,” Proc. SPIE 2774, 342–351 (1996).
[CrossRef]

Fang, Q.

R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
[CrossRef]

Geng, Z. J.

Z. J. Geng, “Omni-directional camera,” U.S. patent D436,612 S (12January2001).

Z. J. Geng, “Method and apparatus for omnidirectional imaging,” U.S. patent 6,304,285 B1 (16October2001).

Z. J. Geng, “Method and apparatus for an omni-directional video surveillance system,” U.S. patent 7,940,299 B2 (10May2011).

Z. J. Geng, “Method and apparatus for omnidirectional three dimensional imaging,” U.S. patent 6,744,569 B2 (1June2004).

Gilbert, J. A.

J. A. Gilbert, “Endoscopic inspection and measurement,” Proc. SPIE 1771, 106–112 (1992).
[CrossRef]

S. B. Fair and J. A. Gilbert, “Panoramic endoscopy,” Proc. SPIE 1649, 203–207 (1992).
[CrossRef]

Greguss, P.

P. Greguss, “Panoramic imaging block for three-dimensional space,” U.S. patent 4,566,763 (28January1986).

Hoogland, J.

J. Hoogland, “Panoramic imaging arrangement,” U.S. patent 0003673 A1 (10January2002).

Hou, X. Y.

Hou, X.-Y.

Huang, Z.

Kopilovic, I.

I. Kopilovic, B. Vagvolgyi, and T. Sziranyi, “Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection,” in Proceedings of the International Conference on Pattern Recognition (ICPR’00) (2000), Vol. 4, pp. 714–717.

Lehner, D. L.

D. L. Lehner, A. G. Richter, and D. R. Matthys, “Characterization of the panoramic annular lens,” Exp. Mech. 36, 333–338 (1996).
[CrossRef]

Li, W.-J.

W.-J. Li, “Optical design of 5 mega pixel mobile phone lens,” Laser Optoelectron. Prog. 46, 56–59 (2009).
[CrossRef]

Liang, P.

Ma, T.

Martynov, V. N.

V. N. Martynov, “New constructions of panoramic annular lenses: design principle and output characteristics analysis,” Proc. SPIE 71000, 71000O (2008).
[CrossRef]

Matthys, D. R.

D. L. Lehner, A. G. Richter, and D. R. Matthys, “Characterization of the panoramic annular lens,” Exp. Mech. 36, 333–338 (1996).
[CrossRef]

Niu, S.

Pate, M. A.

M. A. Pate, “Optical design and specification of telecentric optical systems,” Proc. SPIE 3482, 877–886 (1998).
[CrossRef]

Richter, A. G.

D. L. Lehner, A. G. Richter, and D. R. Matthys, “Characterization of the panoramic annular lens,” Exp. Mech. 36, 333–338 (1996).
[CrossRef]

Solomatin, V. A.

Sziranyi, T.

I. Kopilovic, B. Vagvolgyi, and T. Sziranyi, “Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection,” in Proceedings of the International Conference on Pattern Recognition (ICPR’00) (2000), Vol. 4, pp. 714–717.

L. Czuni, B. Vagvolgyi, and T. Sziranyi, “A compact panoramic visual sensor for intelligent applications,” in Proceedings of the 4th Asian Conference on Computer Vision (ACCV2000) (IEEE, 2000), pp. 258–263.

Thibault, S.

S. Thibault, “Space telemetric panomorph imaging system for micro/nano satellite,” Proc. SPIE. 6958, 69580T (2007).
[CrossRef]

Togino, T.

T. Togino, “Optical system,” U.S. patent 0013191 A1(17January2008).

Trubko, S.

S. Trubko, “Super wide-angle panoramic imaging apparatus,” U.S. patent 6,611,282 B1 (26August2003).

Vagvolgyi, B.

L. Czuni, B. Vagvolgyi, and T. Sziranyi, “A compact panoramic visual sensor for intelligent applications,” in Proceedings of the 4th Asian Conference on Computer Vision (ACCV2000) (IEEE, 2000), pp. 258–263.

I. Kopilovic, B. Vagvolgyi, and T. Sziranyi, “Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection,” in Proceedings of the International Conference on Pattern Recognition (ICPR’00) (2000), Vol. 4, pp. 714–717.

Wallerstein, E. P.

E. P. Wallerstein, “Panoramic imaging system,” U.S. patent US 2004/0252384 A1 (16December2004).

Wang, R. C. C.

R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
[CrossRef]

Xiao, X.

X. Xiao, G.-G. Yang, and J. Bai, “Enhancement of panoramic image resolution based on swift interpolation of Bezier surface,” Proc. SPIE 6279, 627931 (2007).
[CrossRef]

Yang, G.-G.

X. Xiao, G.-G. Yang, and J. Bai, “Enhancement of panoramic image resolution based on swift interpolation of Bezier surface,” Proc. SPIE 6279, 627931 (2007).
[CrossRef]

Yu, J.

Appl. Opt. (1)

Exp. Mech. (1)

D. L. Lehner, A. G. Richter, and D. R. Matthys, “Characterization of the panoramic annular lens,” Exp. Mech. 36, 333–338 (1996).
[CrossRef]

J. Biomed. Opt. (1)

R. C. C. Wang, Q. Fang, M. J. Deen, and D. Armstrong, “Development of a catadioptric endoscope objective with forward and side views,” J. Biomed. Opt. 16, 066015 (2011).
[CrossRef]

J. Opt. Technol. (1)

Laser Optoelectron. Prog. (1)

W.-J. Li, “Optical design of 5 mega pixel mobile phone lens,” Laser Optoelectron. Prog. 46, 56–59 (2009).
[CrossRef]

Opt. Express (2)

Proc. SPIE (6)

X. Xiao, G.-G. Yang, and J. Bai, “Enhancement of panoramic image resolution based on swift interpolation of Bezier surface,” Proc. SPIE 6279, 627931 (2007).
[CrossRef]

H. R. Fallah, “Higher order pupil aberrations in wide angle and panoramic optical systems,” Proc. SPIE 2774, 342–351 (1996).
[CrossRef]

M. A. Pate, “Optical design and specification of telecentric optical systems,” Proc. SPIE 3482, 877–886 (1998).
[CrossRef]

V. N. Martynov, “New constructions of panoramic annular lenses: design principle and output characteristics analysis,” Proc. SPIE 71000, 71000O (2008).
[CrossRef]

S. B. Fair and J. A. Gilbert, “Panoramic endoscopy,” Proc. SPIE 1649, 203–207 (1992).
[CrossRef]

J. A. Gilbert, “Endoscopic inspection and measurement,” Proc. SPIE 1771, 106–112 (1992).
[CrossRef]

Proc. SPIE. (1)

S. Thibault, “Space telemetric panomorph imaging system for micro/nano satellite,” Proc. SPIE. 6958, 69580T (2007).
[CrossRef]

Other (12)

ZEMAX optical design program, user’s guide version 8.0, Focus Software, Inc. (1999).

L. Czuni, B. Vagvolgyi, and T. Sziranyi, “A compact panoramic visual sensor for intelligent applications,” in Proceedings of the 4th Asian Conference on Computer Vision (ACCV2000) (IEEE, 2000), pp. 258–263.

I. Kopilovic, B. Vagvolgyi, and T. Sziranyi, “Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection,” in Proceedings of the International Conference on Pattern Recognition (ICPR’00) (2000), Vol. 4, pp. 714–717.

T. Togino, “Optical system,” U.S. patent 0013191 A1(17January2008).

E. P. Wallerstein, “Panoramic imaging system,” U.S. patent US 2004/0252384 A1 (16December2004).

S. Trubko, “Super wide-angle panoramic imaging apparatus,” U.S. patent 6,611,282 B1 (26August2003).

J. Hoogland, “Panoramic imaging arrangement,” U.S. patent 0003673 A1 (10January2002).

Z. J. Geng, “Method and apparatus for an omni-directional video surveillance system,” U.S. patent 7,940,299 B2 (10May2011).

Z. J. Geng, “Method and apparatus for omnidirectional imaging,” U.S. patent 6,304,285 B1 (16October2001).

Z. J. Geng, “Omni-directional camera,” U.S. patent D436,612 S (12January2001).

Z. J. Geng, “Method and apparatus for omnidirectional three dimensional imaging,” U.S. patent 6,744,569 B2 (1June2004).

P. Greguss, “Panoramic imaging block for three-dimensional space,” U.S. patent 4,566,763 (28January1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

A PAL system.

Fig. 2.
Fig. 2.

Telecentric PAL block.

Fig. 3.
Fig. 3.

Structure of a PAL surveillance system. The different colors represent the different FOVs, which are 52°, 70°, 80°, 90°, 100°, and 108°.

Fig. 4.
Fig. 4.

Graphic report of the PAL surveillance system: (a) MTF diagram, (b) spot diagram, (c) relative curvature/distortion diagram, and (d) relative illumination diagram.

Fig. 5.
Fig. 5.

PAL image mapping: (a) PAL annular image and (b) PAL anamorphic annular image.

Fig. 6.
Fig. 6.

Structure of an anamorphic PAL surveillance system. The different colors represent the different FOVs, which are 55°, 80°, and 108°.

Fig. 7.
Fig. 7.

Graphic report of an anamorphic PAL surveillance system: (a) MTF diagram, (b) spot diagram, (c) footprint diagram, and (d) relative illumination diagram.

Fig. 8.
Fig. 8.

Structure of the phone camera (a) without the PAL attachment and (b) with the PAL attachment. The different colors represent the different FOVs, which are 57°, 70°, 90°, and 100°.

Fig. 9.
Fig. 9.

Graphic report of the phone camera with a PAL attachment: (a) MTF diagram; (b) spot diagram, (c) relative curvature/distortion diagram, and (d) relative illumination diagram.

Fig. 10.
Fig. 10.

Structure of a PAL endoscope system. The different colors represent the different FOVs, which are 30°, 40°, 50°, 60°, 70°, 80°, and 90°.

Fig. 11.
Fig. 11.

Graphic report of a PAL endoscope: (a) MTF diagram, (b) spot diagram; (c) relative curvature/distortion diagram, and (d) relative illumination diagram.

Tables (5)

Tables Icon

Table 1. PAL-Based System Design Scheme

Tables Icon

Table 2. Design Data for the Surveillance System

Tables Icon

Table 3. Design Data for an Anamorphic Surveillance System

Tables Icon

Table 4. Design Data for a PAL Attachment

Tables Icon

Table 5. Design Data for the PAL Endoscope System

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DT=tanθθtanθ×100%.

Metrics