Abstract

Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the “reversible programmable Boolean logic unit (RPBLU).” The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
    [CrossRef]
  2. R. Landauer, “Energy requirement in communication,” Appl. Phys. Lett. 51, 2056–2058 (1987).
    [CrossRef]
  3. C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev. 17, 525–532 (1973).
    [CrossRef]
  4. E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
    [CrossRef]
  5. R. P. Feynman, “Quantum mechanical computers,” Opt. News 11, 11–20 (1985).
    [CrossRef]
  6. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
    [CrossRef]
  7. H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
    [CrossRef]
  8. H. J. Caulfield, “Zero-energy optical logic: can it be practical?” in Optical Supercomputing, Second International Workshop (OSC, 2009), pp. 30–36.
  9. H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Express 1, 43–49 (2011).
  10. H. J. Caulfield and L. Qian, “Thermodynamics of computation,” in Encyclopedia of Complexity and Systems Science (Springer, 2009), pp. 9127–9137.
  11. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 261–263 (2010).
    [CrossRef]
  12. R. S. Tucker, “The role of optics in computing,” Nat. Photon. 4, 405 (2010).
    [CrossRef]
  13. T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
    [CrossRef]
  14. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986).
    [CrossRef]
  15. A. Korpel and A. W. Lohmann, “Polarization and optical bistability,” Appl. Opt. 25, 1528–1529 (1986).
    [CrossRef]
  16. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987).
    [CrossRef]
  17. T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
    [CrossRef]
  18. S. Fukushima, T. Kurokawa, S. Matsuo, and H. Kozawaguchi, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).
    [CrossRef]
  19. S. Fukushima, T. Kurokawa, and M. Ohno, “Ferroelectric liquid-crystal spatial light modulator achieving bipolar image operation and cascadability,” Appl. Opt. 31, 6859–6868 (1992).
    [CrossRef]
  20. CVI Mellers Gariot, catalog: All Things Photonic, Vol. 1.
  21. URL: http://jameslin.name/bball/ .
  22. A. D. Vos, “Reversible computer hardware,” Electron. Notes Theor. Comput. Sci. 253, 17–22 (2010).
    [CrossRef]
  23. C. Vieri, M. J. Ammer, M. Frank, N. Margolus, and T. Knight, “A fully reversible asymptotically zero energy microprocessor” (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.474 .
  24. C. J. Vieri, “Pendulum: a reversible computer architecture,” Master’s thesis (MIT Artificial Intelligence Laboratory, 1995).

2012

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
[CrossRef]

2011

T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
[CrossRef]

H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Express 1, 43–49 (2011).

2010

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 261–263 (2010).
[CrossRef]

R. S. Tucker, “The role of optics in computing,” Nat. Photon. 4, 405 (2010).
[CrossRef]

A. D. Vos, “Reversible computer hardware,” Electron. Notes Theor. Comput. Sci. 253, 17–22 (2010).
[CrossRef]

2007

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
[CrossRef]

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

1992

1990

1987

1986

1985

R. P. Feynman, “Quantum mechanical computers,” Opt. News 11, 11–20 (1985).
[CrossRef]

1982

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

1973

C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev. 17, 525–532 (1973).
[CrossRef]

1961

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
[CrossRef]

Awwal, A. A. S.

Bennett, C. H.

C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev. 17, 525–532 (1973).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Express 1, 43–49 (2011).

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 261–263 (2010).
[CrossRef]

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

H. J. Caulfield and L. Qian, “Thermodynamics of computation,” in Encyclopedia of Complexity and Systems Science (Springer, 2009), pp. 9127–9137.

H. J. Caulfield, “Zero-energy optical logic: can it be practical?” in Optical Supercomputing, Second International Workshop (OSC, 2009), pp. 30–36.

Chattopadhyay, T.

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
[CrossRef]

T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
[CrossRef]

Cherri, A. K.

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 261–263 (2010).
[CrossRef]

Feynman, R. P.

R. P. Feynman, “Quantum mechanical computers,” Opt. News 11, 11–20 (1985).
[CrossRef]

Fredkin, E.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Fukushima, S.

Hardy, J.

Karim, M. A.

Korpel, A.

Kozawaguchi, H.

Kurokawa, T.

Landauer, R.

R. Landauer, “Energy requirement in communication,” Appl. Phys. Lett. 51, 2056–2058 (1987).
[CrossRef]

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
[CrossRef]

Lohmann, A. W.

Matsuo, S.

Ohno, M.

Qian, L.

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

H. J. Caulfield and L. Qian, “Thermodynamics of computation,” in Encyclopedia of Complexity and Systems Science (Springer, 2009), pp. 9127–9137.

Shamir, J.

Soref, R. A.

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Toffoli, T.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Tucker, R. S.

R. S. Tucker, “The role of optics in computing,” Nat. Photon. 4, 405 (2010).
[CrossRef]

Vieri, C. J.

C. J. Vieri, “Pendulum: a reversible computer architecture,” Master’s thesis (MIT Artificial Intelligence Laboratory, 1995).

Vos, A. D.

A. D. Vos, “Reversible computer hardware,” Electron. Notes Theor. Comput. Sci. 253, 17–22 (2010).
[CrossRef]

Zavalin, A.

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Landauer, “Energy requirement in communication,” Appl. Phys. Lett. 51, 2056–2058 (1987).
[CrossRef]

Electron. Notes Theor. Comput. Sci.

A. D. Vos, “Reversible computer hardware,” Electron. Notes Theor. Comput. Sci. 253, 17–22 (2010).
[CrossRef]

IBM J. Res. Dev.

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183–191 (1961).
[CrossRef]

C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev. 17, 525–532 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
[CrossRef]

Int. J. Theor. Phys.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Nat. Photon.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 261–263 (2010).
[CrossRef]

R. S. Tucker, “The role of optics in computing,” Nat. Photon. 4, 405 (2010).
[CrossRef]

Opt. Commun.

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. News

R. P. Feynman, “Quantum mechanical computers,” Opt. News 11, 11–20 (1985).
[CrossRef]

Phys. Express

H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Express 1, 43–49 (2011).

Other

H. J. Caulfield and L. Qian, “Thermodynamics of computation,” in Encyclopedia of Complexity and Systems Science (Springer, 2009), pp. 9127–9137.

H. J. Caulfield, “Zero-energy optical logic: can it be practical?” in Optical Supercomputing, Second International Workshop (OSC, 2009), pp. 30–36.

C. Vieri, M. J. Ammer, M. Frank, N. Margolus, and T. Knight, “A fully reversible asymptotically zero energy microprocessor” (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.474 .

C. J. Vieri, “Pendulum: a reversible computer architecture,” Master’s thesis (MIT Artificial Intelligence Laboratory, 1995).

CVI Mellers Gariot, catalog: All Things Photonic, Vol. 1.

URL: http://jameslin.name/bball/ .

Supplementary Material (1)

» Media 1: MOV (2324 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

All-optical circuit of RPBLU. PBS, polarizing beam splitter; LC-PSLM, liquid crystal-phase spatial light modulator.

Fig. 2.
Fig. 2.

Simulated waveform of RPBLU for I1=I2=s-polarized light, I3=p-polarized light and P=R=A, Q=B. Red line, s-polarized; blue line, p-polarized light.

Fig. 3.
Fig. 3.

Insertion loss for different programming inputs (A, B, A).

Fig. 4.
Fig. 4.

RPBLU operation with balls.

Fig. 5.
Fig. 5.

Operation of reversible programmable logic with playing cards as in Table 1. Spade is treated as logic “1” and diamond is treated as logic “0,” respectively. (Media 1).

Fig. 6.
Fig. 6.

We can easily get the input back by (a) putting a mirror at the output or (b) cascading two RPBLU back to back.

Tables (2)

Tables Icon

Table 1. Example for the Operation of RPBLU (“s” Indicates s-polarized light or logic ‘1,’ and “p” Indicates p-Polarized Light or Logic ‘0’)

Tables Icon

Table 2. Some Logical Operations with RPBLU (“” and “” are Boolean XOR and XNOR Operations, Respectively)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

(1000)(01)=(00) and (0001)(01)=(01).
(1000)(10)=(10) and (0001)(10)=(00).
Ja=MP(MyJI2+MxMλ/2JI1),
Jb=MP(MxJI2+MyMλ/2JI1),
Jc=(MyJb+MxJa),
Jd=(MyJa+MxJb),
Je=MQ(MyJI3+MxMλ/2Jd),
Jf=MQ(MxJI3+MyMλ/2Jd),
Jg=Mλ/2(MyJf+MxJe),
JO3=(MyJe+MxJf),
Jh=MR(MyJg+MxJc),
Ji=MR(MxJg+MyJc),
JO1=Mλ/2(MyJi+MxJh),
JO2=(MyJh+MxJi).

Metrics