Abstract

Chromotomosynthetic imaging (CTI) is a method of convolving spatial and spectral information that can be reconstructed into a hyperspectral image cube using the same transforms employed in medical tomosynthesis. A direct vision prism instrument operating in the visible (400–725 nm) with 0.6 mrad instantaneous field of view (IFOV) and 0.6–10 nm spectral resolution has been constructed and characterized. Reconstruction of hyperspectral data cubes requires an estimation of the instrument component properties that define the forward transform. We analyze the systematic instrumental error in collected projection data resulting from prism spectral dispersion, prism alignment, detector array position, and prism rotation angle. The shifting and broadening of both the spectral lineshape function and the spatial point spread function in the reconstructed hyperspectral imagery is compared with experimental results for monochromatic point sources. The shorter wavelength (λ<500nm) region where the prism has the highest spectral dispersion suffers mostly from degradation of spectral resolution in the presence of systematic error, while longer wavelengths (λ>600nm) suffer mostly from a shift of the spectral peaks. The quality of the reconstructed hyperspectral imagery is most sensitive to the misalignment of the prism rotation mount. With less than 1° total angular error in the two axes of freedom, spectral resolution was degraded by as much as a factor of 2 in the blue spectral region. For larger errors than this, spectral peaks begin to split into bimodal distributions, and spatial point response functions are reconstructed in rings with radii proportional to wavelength and spatial resolution.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crow and C. F. Coker, “High-fidelity modeling of infrared emissions form missile and aircraft exhaust plumes,” Proc. SPIE 2741, 242–250 (1996).
    [CrossRef]
  2. J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003).
    [CrossRef]
  3. F. S. Simmons, Rocket Exhaust Plume Phenomenology(Aerospace, 2000).
  4. J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 65–77 (1995).
    [CrossRef]
  5. J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
    [CrossRef]
  6. J. M. Mooney and W. S. Ewing, “Characterization of a hyperspectral imager,” Proceedings of the 21st Information Systems Research Seminar in Scandinavia (CD-ROM) (Aalborg University, 1998).
  7. F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
    [CrossRef]
  8. P. Scheirich, “An engineering trade space analysis for a space-based hyperspectral chromotomographic scanner,” Master’s thesis (Air Force Institute of Technology, 2009).
  9. T. A. Book, “Design analysis of a space based chromotomographic hyperspectral imaging experiment,” Master’s thesis (Air Force Institute of Technology, 2010).
  10. D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
    [CrossRef]
  11. D. O’Dell, “Development and demonstration of a field-deployable fast chromotomographic imager,” Master’s thesis (Air Force Institute of Technology, 2010).
  12. Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005).
    [CrossRef]
  13. R. L. Bostick and G. P. Perram, “Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system,” Rev. Sci. Instrum. 83, 033110 (2012).
    [CrossRef]
  14. L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
  15. D. Van de Sompel and M. Brady, “A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography,” in Proceedings of the 30th Annual International Conference of the IEEE In Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2729–2732.
  16. U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984).
    [CrossRef]
  17. K. C. Gustke, “Reconstruction algorithm characterization and performance monitoring in limited-angle chromotomography,” Master’s thesis (Air Force Institute of Technology, 2004).
  18. M. Gould and S. Cain, “Development of a fast chromotomographic spectrometer,” Opt. Eng. 44, 110503 (2005).
    [CrossRef]
  19. H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
    [CrossRef]
  20. A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. 16, 246–258 (1999).
    [CrossRef]
  21. M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
    [CrossRef]
  22. J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997).
    [CrossRef]
  23. K. C. Tam and V. Perez-Mendez, “Tomographic imaging with limited angle input,” J. Opt. Soc. Am. 71, 582–592 (1981).
    [CrossRef]
  24. N Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. spatial and spectral resolution,” Appl. Opt. 47, F85–F95 (2008).
    [CrossRef]
  25. G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001).
    [CrossRef]
  26. G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
    [CrossRef]
  27. T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
    [CrossRef]
  28. R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000).
    [CrossRef]
  29. R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Phys. Med. Biol. 21, 689–732 (1976).
    [CrossRef]
  30. J. T. Dobbins and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003).
    [CrossRef]

2012

R. L. Bostick and G. P. Perram, “Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system,” Rev. Sci. Instrum. 83, 033110 (2012).
[CrossRef]

2010

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

2008

F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[CrossRef]

N Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. spatial and spectral resolution,” Appl. Opt. 47, F85–F95 (2008).
[CrossRef]

2005

M. Gould and S. Cain, “Development of a fast chromotomographic spectrometer,” Opt. Eng. 44, 110503 (2005).
[CrossRef]

Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005).
[CrossRef]

2004

T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
[CrossRef]

2003

J. T. Dobbins and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003).
[CrossRef]

J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003).
[CrossRef]

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

2001

G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001).
[CrossRef]

2000

M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
[CrossRef]

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000).
[CrossRef]

1999

A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. 16, 246–258 (1999).
[CrossRef]

1997

J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997).
[CrossRef]

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

1996

D. R. Crow and C. F. Coker, “High-fidelity modeling of infrared emissions form missile and aircraft exhaust plumes,” Proc. SPIE 2741, 242–250 (1996).
[CrossRef]

1995

J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 65–77 (1995).
[CrossRef]

1993

H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
[CrossRef]

1984

U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984).
[CrossRef]

1981

1976

R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Phys. Med. Biol. 21, 689–732 (1976).
[CrossRef]

Albagli, D.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

An, M.

M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
[CrossRef]

J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997).
[CrossRef]

Bagby, W. F.

J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003).
[CrossRef]

Beaulieu, C. F.

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

Birdwell, R. L.

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

Black, J. T.

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Book, T. A.

T. A. Book, “Design analysis of a space based chromotomographic hyperspectral imaging experiment,” Master’s thesis (Air Force Institute of Technology, 2010).

Bostick, R. L.

R. L. Bostick and G. P. Perram, “Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system,” Rev. Sci. Instrum. 83, 033110 (2012).
[CrossRef]

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Brady, M.

D. Van de Sompel and M. Brady, “A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography,” in Proceedings of the 30th Annual International Conference of the IEEE In Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2729–2732.

Brodzik, A.

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

Brodzik, A. K.

M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
[CrossRef]

A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. 16, 246–258 (1999).
[CrossRef]

J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997).
[CrossRef]

Brooks, R. A.

R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Phys. Med. Biol. 21, 689–732 (1976).
[CrossRef]

Cain, S.

M. Gould and S. Cain, “Development of a fast chromotomographic spectrometer,” Opt. Eng. 44, 110503 (2005).
[CrossRef]

Castleberry, D. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Chen, Y.

Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005).
[CrossRef]

Christian, B. T.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Cobb, R. G.

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Coker, C. F.

D. R. Crow and C. F. Coker, “High-fidelity modeling of infrared emissions form missile and aircraft exhaust plumes,” Proc. SPIE 2741, 242–250 (1996).
[CrossRef]

Crow, D. R.

D. R. Crow and C. F. Coker, “High-fidelity modeling of infrared emissions form missile and aircraft exhaust plumes,” Proc. SPIE 2741, 242–250 (1996).
[CrossRef]

DeJule, M. C.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Dereniak, E. L.

Di Chiro, G.

R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Phys. Med. Biol. 21, 689–732 (1976).
[CrossRef]

Dobbins, J. T.

Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005).
[CrossRef]

J. T. Dobbins and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003).
[CrossRef]

R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000).
[CrossRef]

Dumont, P.

F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[CrossRef]

Ewing, W. S.

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

J. M. Mooney and W. S. Ewing, “Characterization of a hyperspectral imager,” Proceedings of the 21st Information Systems Research Seminar in Scandinavia (CD-ROM) (Aalborg University, 1998).

Fahrig, R.

G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001).
[CrossRef]

Fitzgerald, P. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Fobare, D. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Giambattista, B. W.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Giardino, A. A.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Godfrey, D. G.

R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000).
[CrossRef]

Godfrey, D. J.

J. T. Dobbins and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003).
[CrossRef]

Gould, M.

M. Gould and S. Cain, “Development of a fast chromotomographic spectrometer,” Opt. Eng. 44, 110503 (2005).
[CrossRef]

Groehnuis, R. A. J.

U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984).
[CrossRef]

Gustke, K. C.

K. C. Gustke, “Reconstruction algorithm characterization and performance monitoring in limited-angle chromotomography,” Master’s thesis (Air Force Institute of Technology, 2004).

Hagen, N

Hawks, M. R.

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Horiba, I.

H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
[CrossRef]

Ikeda, D. M.

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

Iwata, A.

H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
[CrossRef]

Kopans, D. B.

T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
[CrossRef]

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Kwasnick, R. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Landberg, C. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Liu, J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Lo, J. Y.

Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005).
[CrossRef]

Lubowski, S. J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Matsuo, H.

H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
[CrossRef]

Mooney, J. M.

F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[CrossRef]

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
[CrossRef]

A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. 16, 246–258 (1999).
[CrossRef]

J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997).
[CrossRef]

J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 65–77 (1995).
[CrossRef]

J. M. Mooney and W. S. Ewing, “Characterization of a hyperspectral imager,” Proceedings of the 21st Information Systems Research Seminar in Scandinavia (CD-ROM) (Aalborg University, 1998).

Moore, R.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Moore, R. H.

T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
[CrossRef]

Murguia, J. E.

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

Niklason, L. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Niklason, L. T.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

O’Dell, D.

D. O’Dell, “Development and demonstration of a field-deployable fast chromotomographic imager,” Master’s thesis (Air Force Institute of Technology, 2010).

O’Dell, D. C.

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Opsahl-Ong, B. H.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Orson, J. A.

J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003).
[CrossRef]

Pelc, N.

G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001).
[CrossRef]

Pelc, N. J.

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

Perez-Mendez, V.

Perram, G. P.

R. L. Bostick and G. P. Perram, “Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system,” Rev. Sci. Instrum. 83, 033110 (2012).
[CrossRef]

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003).
[CrossRef]

Possin, G. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Rafferty, E. A.

T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
[CrossRef]

Reeves, T. D.

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

Reeves, T. E.

F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[CrossRef]

Richotte, J. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Ruttiman, U. E.

U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984).
[CrossRef]

Scheirich, P.

P. Scheirich, “An engineering trade space analysis for a space-based hyperspectral chromotomographic scanner,” Master’s thesis (Air Force Institute of Technology, 2009).

Sheperd, F. D.

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

Shepherd, F.

F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[CrossRef]

Simmons, F. S.

F. S. Simmons, Rocket Exhaust Plume Phenomenology(Aerospace, 2000).

Slanetz, P. J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Stevens, G.

G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001).
[CrossRef]

Stevens, G. M.

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

Suzumura, N.

H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
[CrossRef]

Swenson, E. D.

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Tam, K. C.

Tolimieri, R.

M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
[CrossRef]

Van de Sompel, D.

D. Van de Sompel and M. Brady, “A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography,” in Proceedings of the 30th Annual International Conference of the IEEE In Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2729–2732.

Warp, R. J.

R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000).
[CrossRef]

Webber, R. L.

U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984).
[CrossRef]

Wei, C. Y.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Wirth, R. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

Wu, T.

T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
[CrossRef]

Appl. Opt.

IEEE Trans. Med. Imaging

U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984).
[CrossRef]

Infrared Phys. Technol.

J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003).
[CrossRef]

J. Opt. Soc. Am.

K. C. Tam and V. Perez-Mendez, “Tomographic imaging with limited angle input,” J. Opt. Soc. Am. 71, 582–592 (1981).
[CrossRef]

A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. 16, 246–258 (1999).
[CrossRef]

Med. Phys.

G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001).
[CrossRef]

T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004).
[CrossRef]

Opt. Eng.

M. Gould and S. Cain, “Development of a fast chromotomographic spectrometer,” Opt. Eng. 44, 110503 (2005).
[CrossRef]

Phys. Med. Biol.

R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Phys. Med. Biol. 21, 689–732 (1976).
[CrossRef]

J. T. Dobbins and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003).
[CrossRef]

Proc. SPIE

R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000).
[CrossRef]

M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000).
[CrossRef]

J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997).
[CrossRef]

D. R. Crow and C. F. Coker, “High-fidelity modeling of infrared emissions form missile and aircraft exhaust plumes,” Proc. SPIE 2741, 242–250 (1996).
[CrossRef]

Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005).
[CrossRef]

J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 65–77 (1995).
[CrossRef]

J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000).
[CrossRef]

F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[CrossRef]

D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010).
[CrossRef]

Radiology

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).

G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003).
[CrossRef]

Rev. Sci. Instrum.

R. L. Bostick and G. P. Perram, “Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system,” Rev. Sci. Instrum. 83, 033110 (2012).
[CrossRef]

Trans. Med. Imaging

H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993).
[CrossRef]

Other

K. C. Gustke, “Reconstruction algorithm characterization and performance monitoring in limited-angle chromotomography,” Master’s thesis (Air Force Institute of Technology, 2004).

D. Van de Sompel and M. Brady, “A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography,” in Proceedings of the 30th Annual International Conference of the IEEE In Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2729–2732.

D. O’Dell, “Development and demonstration of a field-deployable fast chromotomographic imager,” Master’s thesis (Air Force Institute of Technology, 2010).

P. Scheirich, “An engineering trade space analysis for a space-based hyperspectral chromotomographic scanner,” Master’s thesis (Air Force Institute of Technology, 2009).

T. A. Book, “Design analysis of a space based chromotomographic hyperspectral imaging experiment,” Master’s thesis (Air Force Institute of Technology, 2010).

J. M. Mooney and W. S. Ewing, “Characterization of a hyperspectral imager,” Proceedings of the 21st Information Systems Research Seminar in Scandinavia (CD-ROM) (Aalborg University, 1998).

F. S. Simmons, Rocket Exhaust Plume Phenomenology(Aerospace, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic design of the CT instrument. L1 and L2 are essentially an afocal telescope to collimate incoming light. A field stop is located at the image plane between these two lenses. The rotating DVP disperses light as a function of wavelength, and L3 acts as a focusing lens to produce an image on the detector array.

Fig. 2.
Fig. 2.

Dispersion φ(λ) of the DVP and resulting displacement at the detector array, r(λ). The solid curve is for a 0° field angle (angle of incidence), and the dashed curve, for a 0.2° field angle.

Fig. 3.
Fig. 3.

System modeled spatial resolution (dotted curve) and spectral resolution (solid curve) with perfect reconstruction [14]. Spectral resolution, Δλ, is derived from the spatial resolution, w(λ) using Eq. (20).

Fig. 4.
Fig. 4.

Row (a) provides the undispersed image, s(x,y,λ), for an on-axis, monochromatic (λ=540nm) point source. Row (b) illustrates the projections summed over all prism rotation angles, p(x,y,θ), for the same point source with (column 1) r=10.3 pixels, rε=0; (column 2) r=8 pixels, rε=2.3 pixels; and (column 3) r=6sinθ+12 pixels, rε=6sinθ1.7 pixels. Row (c) is the spatial representation of the error function hε(x,y,λ) with the same displacements. In row (d), the convolution of the error kernel with the undispersed image yields the reconstructed image, t(x,y,λ).

Fig. 5.
Fig. 5.

Shifting of an on-axis, monochromatic point source from its undispersed location at the origin of the x-y plane. The DVP dispersion displaces the source by r(λ) at a rotation angle θ. In the direction perpendicular to the dispersive axis, the system’s spatial resolution, w(λ), is defined by the PSF. In the dispersive direction, spectral resolution, Δλ, is defined by the line spread function (LSF).

Fig. 6.
Fig. 6.

Summary of the system errors considered for this study. The dispersion, detector distance and tilt, prism misalignment, and mount misalignment are all described by the rε(λ,θ) term input to the error kernel, Hε [Eq. (12)].

Fig. 7.
Fig. 7.

Shift in spectral peak location as εφ increases from 0.01° (solid curve) to 0.05° (dashed curve) to 0.10° (dotted curve). The effect is markedly increased at longer wavelengths.

Fig. 8.
Fig. 8.

Comparison of object and reconstructed hyperspectral images for detector tilt. The effects of error in terms of spatial shift Δs, spectral line shift Δl, loss of spatial resolution w, and loss of spectral resolution Δλ for four difference cases of detector distance error εd and detector tilt δx and δy. In each plot the diamonds indicate εd=1mm, δx=1°, and δy=0°; the open squares indicate εd=1mm, δx=2°, and δy=0°, the x’s indicate εd=1mm, δx=3°, and δy=3°, and the open circles indicate εd=2mm, δx=3°, and δy=3°.

Fig. 9.
Fig. 9.

The spectral peak shift Δl as a function of the prism misalignment αx in the rotation stage mount. Plotted are αx=0.5° (diamonds), +0.5° (open squares), 1.0° (x’s), and 1.0° (open circles).

Fig. 10.
Fig. 10.

Comparison of object and reconstructed hyperspectral images for mount misalignment. The effects of error in terms of spatial shift Δs, spectral line shift Δl, loss of spatial resolution w, and loss of spectral resolution Δλ for four difference cases of mount misalignment components βx and βy: βx=0.25°, βy=0.00° (diamonds), βx=0.50°, βy=0.00° (open squares), βx=0.25°, βy=0.25° (triangles), βx=0.50°, βy=0.25° (open circles) and βx=0.50°, βy=0.50° (x’s).

Fig. 11.
Fig. 11.

Reconstructed hyperspectral images for an on-axis, monochromatic λ=400nm point source, at three nearby wavelengths: (a) 399 nm; (b) 400 nm, and (c) 401 nm for βx=0.50°, βy=0.50°. The spectra for the (0,0) pixel at the center of the image provides the spectral lineshape functions for (d) progressively worse prism mount misalignment: βx=0.00°, βy=0.00°; βx=0.25°, βy=0.00°; βx=0.50°, βy=0.00°; and βx=0.50°, βy=0.50°. In part (e) the shift in peak wavelength is apparent for the βx=0.50°, βy=0.50° case as prism misalignment, αx, increases from 0.0° to 0.5° to 1.0°.

Fig. 12.
Fig. 12.

The loss of spatial and spectral resolution for given errors in θ, denoted by εθ: εθ=0.10° (diamonds), εθ=0.25° (open squares), and εθ=50° (triangles).

Fig. 13.
Fig. 13.

Measured and modeled rδ(λ,θ) for the 404.7, 435.8, 546.0, and 635 nm spectral lines for detector tilt δx=4°, δy=2° and detector distance error εd=2mm as a function of θ. The measured data points are given by the squares, with the solid curve the model results with associated error estimate.

Fig. 14.
Fig. 14.

Measured and modeled rδ(λ,θ) for the 404.7, 435.8, 546.0, and 635 nm spectral lines for prism and mount misalignment of αx=0.5°, αy=0.5°, βx=0.75°, and βy=0.5° βx=0.5°+/0.25°, βy=0.5°+/0.25°). The measured data points are given by the squares, with the solid curve the model results with associated error estimate.

Tables (1)

Tables Icon

Table 1. Mean and Standard Deviation from the r(λ,θp) and r(λ,θ) Data for Each Measured Wavelength in the Presence of Prism and Mount Misalignment and Detector Distance Error and Tilt

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

p(x,y,θ)=s(xΔx(λ,θ),yΔy(λ,θ),λ)dλ.
I{p(x,y,θ)}=I{s(xΔx,yΔy,λ)dλ}=I{s(x,y,λ)}eikxΔxekyΔydλ,
I{s(x,y)}=s(x,y)ei(kxx+kyy)dxdyS(kx,ky),
rest(λ)=D6tan(φ(λ)).
Δxest(λ,θ)=rest(λ)cos(θ),
Δyest(λ,θ)=rest(λ)sin(θ).
t(x,y,λk)=1mθp(x+Δxest(λk,θ),y+Δyest(λk,θ),θ).
I{t(x,y,λ)}=1mθI{p(x+Δxest(λk,θ),y+Δyest(λk,θ),θ)}=1mθI{p(x,y,θ)}eikxΔxest(λk,θ)eikyΔyest(λk,θ)=1mθI{s(x,y,λ)}eikxΔx(λ,θ)eikyΔy(λ,θ)eikxΔxest(λk,θ)eikyΔyest(λk,θ)dλ.
T(kx,ky,λk)=1mθS(kx,ky,λ)eikx(Δxest(λk,θ)Δx(λ,θ))eiky(Δyest(λk,θ)Δy(λ,θ))dλ.
rε(λ,θ)=r(λ,θ)rest(λ),εx(λ,θ)=Δx(λ,θ)Δxest(λ,θ),εy(λ,θ)=Δy(λ,θ)Δyest(λ,θ).
rα(λ,λk,θ)=r(λ,θ)rest(λk,θ),αx(λ,λk,θ)=Δx(λ,θ)Δxest(λk,θ),αy(λ,λk,θ)=Δy(λ,θ)Δyest(λk,θ).
T(kx,ky,λk)=1mθ[S(kx,ky,λk)Hε(kx,ky,λk,θ)+S(kx,ky,λk)Hε(kx,ky,λ,θ)dλ],
Hε(kx=k,ky=k,λ,θ)=eikεx(λ,θ)eikεy(λ,θ),
Hε(kx=k,ky=k,λ,θ)=eikrε(λ,θ)cos(θ)eikrε(λ,θ)sin(θ),
Hα(kx=k,ky=k,λ,θ)=eikαx(λ,θ)eikαy(λ,θ).
I{s(ξ,η,λk)hε(xξ,yη,λk,θ)dξdη}s(x,y,λk)hε(x,y,λk,θ)=S(kx,ky,λk)Hε(kx,ky,λk,θ),
hε(x,y,λk,θ)=I1{Hε(kx=k,ky=k,λk,θ)}=I1{eikεx(λk,θ)eikεy(λk,θ)}=δ(xεx)δ(yεy).
hα(x,y,λ,θ)=δ(xαx)δ(yαy),
S(kx,ky,λ)H(kx,ky,λ,θ)=s(x,y,λ)hα(x,y,λ,θ),
t(x,y,λk)=1mθ(s(x,y,λk)hε(x,y,λk,θ)+s(x,y,λ)hα(x,y,λk,θ)dλ).
Δλ=w(λ)f3(λ)dφdλ,
rε(λ)=D6·εφ(λ)
rδ(λ,θ)=(D6+εd)·sin(φ(λ))cos(φ(λ)+δx·cos(θ)+δy·sin(θ)),
θI=αx+βx·cos(θ)+βy·sin(θ).
εφ(λ,θ)=φest(λ:θI=0)φ(λ:θI=αx+βx·cos(θ)+βy·sin(θ)).
Hε(k,k,λk,θ)=eik·εx(λk,θ)ei·k·εy(λk,θ).

Metrics