Abstract

Holographic polymer dispersed liquid crystal (HPDLC) memory is fabricated by a photoinduced phase separation comprised of polymer and liquid crystal (LC) phases using laser light interference exposures. The anisotropic diffraction induced by the alignment of LC in the periodic structure of the HPDLC memory is applied to reconstruct the configuration contexts for the optically reconfigurable gate arrays. Optical reconfiguration for various circuits under parallel programmability is implemented by switching the polarization state of incident light on the HPDLC memory using a spatial light modulator.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  2. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
    [CrossRef]
  3. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
    [CrossRef]
  4. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
    [CrossRef]
  5. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
    [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
    [CrossRef]
  7. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002).
    [CrossRef]
  8. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
    [CrossRef]
  9. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
    [CrossRef]
  10. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
    [CrossRef]
  11. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
    [CrossRef]
  12. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
    [CrossRef]
  13. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
    [CrossRef]
  14. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
    [CrossRef]
  15. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
    [CrossRef]
  16. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
    [CrossRef]
  17. A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011).
    [CrossRef]
  18. J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
    [CrossRef]
  19. J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).
  20. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
    [CrossRef]
  21. M. Watanabe and F. Kobayashi, “Dynamic Optically Reconfigurable Gate Array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).
    [CrossRef]
  22. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
    [CrossRef]
  23. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
    [CrossRef]
  24. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009).
    [CrossRef]
  25. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261 (2010).
    [CrossRef]
  26. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask,” Appl. Opt. 50, 6369–6376 (2011).
    [CrossRef]

2011 (2)

2010 (2)

2009 (1)

2008 (4)

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
[CrossRef]

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
[CrossRef]

2007 (1)

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
[CrossRef]

2006 (1)

M. Watanabe and F. Kobayashi, “Dynamic Optically Reconfigurable Gate Array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).
[CrossRef]

2004 (2)

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

2002 (4)

2001 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

2000 (4)

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

1999 (2)

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

1997 (1)

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

An, X.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

Ay, S.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

Barna, S.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

Bowley, C. C.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Brandelik, D. M.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Butler, J. J.

Chandra, S.

Crawford, G. P.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Du, F.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Emoto, A.

Fossum, E.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

Hirokari, T.

Holmes, M. E.

M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
[CrossRef]

Horiguchi, S.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Imai, H.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Kakiuchida, H.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
[CrossRef]

Karasawa, T.

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

Kobayashi, F.

Liu, W.

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

Lu, Y.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Mabuchi, T.

Malcuit, M. S.

Minato, M.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Mok, F.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

Mumbru, J.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

Nakajima, M.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Ogiwara, A.

Ono, H.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
[CrossRef]

Panotopoulos, G.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

Psaltis, D.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

Rodriguez, M. A.

Seto, D.

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

Shepherd, C. K.

Siwecki, S. A.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Taketomi, Y.

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

Tazawa, M.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Watanabe, M.

Wu, S. T.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Yamaguchi, N.

Yoshimura, K.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Zhou, G.

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (4)

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
[CrossRef]

M. Watanabe and F. Kobayashi, “Dynamic Optically Reconfigurable Gate Array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
[CrossRef]

Proc. SPIE (3)

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram for optical reconfiguration by optical connection of an ORGA comprising a gate-array VLSI, a holographic memory, and a laser diode array.

Fig. 2.
Fig. 2.

Optical setup for fabricating HPDLC memory using a laser interferometer with a photo mask.

Fig. 3.
Fig. 3.

Mask pattern designed by the arrangements of circles with diameter of 20 μm and distance of 90 μm. Red marks show the location of the optical path corresponding to the configuration context information: (a) AND circuit and (b) OR circuit.

Fig. 4.
Fig. 4.

Images of fringe patterns formed in the HPDLC grating observed at the crossed Nicole condition with polarizer (P) and analyzer (A) by a polarizing microscope. The image (a) is observed at the arrangement of polarizer placed at 0° with respect to the grating vector, while the image (b) is observed at the rotation of 45°.

Fig. 5.
Fig. 5.

SEM cross-sectional views of HPDLC gratings obtained at different process temperatures. The images A1 and B1 show the samples formed at 25 °C, and the images A2 and B2 show the samples formed at 50 °C. The images in (a) show the typical views of the grating structure and the images in (b) show the close-up views of the sample cross-sections shown in (a).

Fig. 6.
Fig. 6.

Polarization azimuth dependence of the zeroth (closed marks) and first (open marks) order diffraction efficiencies as functions of incident polarization state to clarify the effects of anisotropy on the HPDLC grating formation fabricated at (a) 25 °C and (b) 50 °C.

Fig. 7.
Fig. 7.

Schematic illustration to explain the anisotropic diffractions of HPDLC grating in the internal structures comprised of the LC rich phase and cured polymer rich phase.

Fig. 8.
Fig. 8.

Scheme illustrating the function of anisotropic response using a series of combinations by HPDLC gratings in which the periodic structures are orthogonally aligned.

Fig. 9.
Fig. 9.

Optical system for the configuration generation by reconstruction using HPDLC memory: (a) block diagram of the experimental system, and (b) photograph of three-dimensional alignments to adjust the two HPDLC memory samples placed in front of the ORGA-VLSI by the setup comprised of xy stage 1 and xy stage 2.

Fig. 10.
Fig. 10.

Context images reconstructed by switching the incident polarization state of incident light on a series of combinations by HPDLC samples using the SLM: (a) AND circuit and (b) OR circuit.

Fig. 11.
Fig. 11.

Implementation results: (a) AND circuit, and (b) OR circuit. The reconfiguration of the circuits could be executed correctly, as seen in the downside three signals, which are two input signals and one output signal of the circuits, respectively. The configuration periods were measured as 350 μs for the AND circuit and 250 μs for the OR circuit.

Metrics