Abstract

A novel magneto-optic sensor with electrically adjustable sensitivity is proposed that is based on the approximate multiplication correlation between the linear electro-optic phase retardation and the Faraday magneto-optic rotation angle in a single bismuth germanate crystal. The measurement sensitivity and its temperature stability, linear and monotonic measurement ranges of the proposed sensor can be controlled in real time by adjusting the modulating voltage applied to the sensing crystal. In particular, the proposed sensor can be used for the precise measurement of dc magnetic field or dc current. The basic sensing performance is theoretically analyzed and experimentally demonstrated by dc current measurement.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshino, “Optical fiber sensors for electric industry,” Proc. SPIE 798, 258–266 (1987).
  2. T. Yoshino and M. Yokota, “Optical current sensors,” in Frontiers in Optical Technology: Materials and Devices, P. K. Choudhury and O. N. Singh, eds. (Nova Science, 2007), pp. 273–287.
  3. T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
    [CrossRef]
  4. J. Blake, P. Tantaswadi, and R. T. de Carvalho, “In-line Sagnac interferometer current sensor,” IEEE Trans. Power Delivery 11, 116–121 (1996).
    [CrossRef]
  5. C. Li, T. Yoshino, and X. Cui, “Magneto-optic sensor by use of time-division-multiplexed orthogonal linearly polarized light,” Appl. Opt. 46, 685–688 (2007).
    [CrossRef]
  6. C. Li and X. Cui, “An optical voltage and current sensor with electrically switchable quarter waveplate,” Sensor Actuator A 126, 62–67 (2006).
    [CrossRef]
  7. N. E. Fisher and D. A. Jackson, “Improving the sensitivity of a Faraday current sensor by varying its operating point,” Meas. Sci. Technol. 6, 1508–1518 (1995).
    [CrossRef]
  8. B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of detachable bulk-optic Faraday effect current clamp,” Opt. Eng. 40, 914–920, (2001).
    [CrossRef]
  9. F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
    [CrossRef]
  10. C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
    [CrossRef]
  11. C. Li and T. Yoshino, “Simultaneous measurement of current and voltage by use of one bismuth germanate crystal,” Appl. Opt. 41, 5391–5397 (2002).
    [CrossRef]
  12. C. Li, X. Cui, and T. Yoshino, “Optical electric-power sensor by use of one bismuth germanate crystal,” J. Lightwave Technol. 21, 1328–1333 (2003).
    [CrossRef]
  13. M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
    [CrossRef]
  14. C. Li, “Stepped polarization states: representation and its applications to optical sensing and measurement,” Opt. Commun. 281, 2033–2039 (2008).
    [CrossRef]
  15. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, “Optical, thermo-optic, electro-optic, and photo-elastic properties of bismuth germinate (Bi4Ge3O12),” Appl. Opt. 35, 3562–3569 (1996).
    [CrossRef]
  16. N. Correa, H. Chuaqui, E. Wyndham, F. Veloso, J. Valenzuela, M. Favre, and H. Bhuyan, “Current measurement by Faraday effect on GEPOPU,” Appl. Opt. 51, 758–762 (2012).
    [CrossRef]

2012 (1)

2008 (1)

C. Li, “Stepped polarization states: representation and its applications to optical sensing and measurement,” Opt. Commun. 281, 2033–2039 (2008).
[CrossRef]

2007 (2)

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

C. Li, T. Yoshino, and X. Cui, “Magneto-optic sensor by use of time-division-multiplexed orthogonal linearly polarized light,” Appl. Opt. 46, 685–688 (2007).
[CrossRef]

2006 (1)

C. Li and X. Cui, “An optical voltage and current sensor with electrically switchable quarter waveplate,” Sensor Actuator A 126, 62–67 (2006).
[CrossRef]

2003 (1)

2002 (2)

C. Li and T. Yoshino, “Simultaneous measurement of current and voltage by use of one bismuth germanate crystal,” Appl. Opt. 41, 5391–5397 (2002).
[CrossRef]

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[CrossRef]

2001 (2)

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of detachable bulk-optic Faraday effect current clamp,” Opt. Eng. 40, 914–920, (2001).
[CrossRef]

F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
[CrossRef]

1996 (2)

1995 (1)

N. E. Fisher and D. A. Jackson, “Improving the sensitivity of a Faraday current sensor by varying its operating point,” Meas. Sci. Technol. 6, 1508–1518 (1995).
[CrossRef]

1992 (1)

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
[CrossRef]

1987 (1)

T. Yoshino, “Optical fiber sensors for electric industry,” Proc. SPIE 798, 258–266 (1987).

Bhuyan, H.

Blake, J.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, “In-line Sagnac interferometer current sensor,” IEEE Trans. Power Delivery 11, 116–121 (1996).
[CrossRef]

Chiang, K. S.

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of detachable bulk-optic Faraday effect current clamp,” Opt. Eng. 40, 914–920, (2001).
[CrossRef]

Chu, B. C. B.

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of detachable bulk-optic Faraday effect current clamp,” Opt. Eng. 40, 914–920, (2001).
[CrossRef]

Chuaqui, H.

Conrad, D. C.

Correa, N.

Cui, X.

Day, G. W.

de Carvalho, R. T.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, “In-line Sagnac interferometer current sensor,” IEEE Trans. Power Delivery 11, 116–121 (1996).
[CrossRef]

Favre, M.

Filippov, V. N.

F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
[CrossRef]

Fisher, N. E.

N. E. Fisher and D. A. Jackson, “Improving the sensitivity of a Faraday current sensor by varying its operating point,” Meas. Sci. Technol. 6, 1508–1518 (1995).
[CrossRef]

Hale, P. D.

Hashimoto, T.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
[CrossRef]

Jackson, D. A.

N. E. Fisher and D. A. Jackson, “Improving the sensitivity of a Faraday current sensor by varying its operating point,” Meas. Sci. Technol. 6, 1508–1518 (1995).
[CrossRef]

Kir’yanov, A. V.

F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
[CrossRef]

Kurosawa, K.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
[CrossRef]

Lecona, F. G. P.

F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
[CrossRef]

Lee, K. S.

Li, C.

C. Li, “Stepped polarization states: representation and its applications to optical sensing and measurement,” Opt. Commun. 281, 2033–2039 (2008).
[CrossRef]

C. Li, T. Yoshino, and X. Cui, “Magneto-optic sensor by use of time-division-multiplexed orthogonal linearly polarized light,” Appl. Opt. 46, 685–688 (2007).
[CrossRef]

C. Li and X. Cui, “An optical voltage and current sensor with electrically switchable quarter waveplate,” Sensor Actuator A 126, 62–67 (2006).
[CrossRef]

C. Li, X. Cui, and T. Yoshino, “Optical electric-power sensor by use of one bismuth germanate crystal,” J. Lightwave Technol. 21, 1328–1333 (2003).
[CrossRef]

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[CrossRef]

C. Li and T. Yoshino, “Simultaneous measurement of current and voltage by use of one bismuth germanate crystal,” Appl. Opt. 41, 5391–5397 (2002).
[CrossRef]

Nara, M.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
[CrossRef]

Rose, A. H.

Starodumov, A. N.

F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
[CrossRef]

Tantaswadi, P.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, “In-line Sagnac interferometer current sensor,” IEEE Trans. Power Delivery 11, 116–121 (1996).
[CrossRef]

Valenzuela, J.

Veloso, F.

Wang, M.

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Wei, P.

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Williams, P. A.

Wyndham, E.

Yi, B.

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of detachable bulk-optic Faraday effect current clamp,” Opt. Eng. 40, 914–920, (2001).
[CrossRef]

Yokota, M.

T. Yoshino and M. Yokota, “Optical current sensors,” in Frontiers in Optical Technology: Materials and Devices, P. K. Choudhury and O. N. Singh, eds. (Nova Science, 2007), pp. 273–287.

Yoshino, T.

C. Li, T. Yoshino, and X. Cui, “Magneto-optic sensor by use of time-division-multiplexed orthogonal linearly polarized light,” Appl. Opt. 46, 685–688 (2007).
[CrossRef]

C. Li, X. Cui, and T. Yoshino, “Optical electric-power sensor by use of one bismuth germanate crystal,” J. Lightwave Technol. 21, 1328–1333 (2003).
[CrossRef]

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[CrossRef]

C. Li and T. Yoshino, “Simultaneous measurement of current and voltage by use of one bismuth germanate crystal,” Appl. Opt. 41, 5391–5397 (2002).
[CrossRef]

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
[CrossRef]

T. Yoshino, “Optical fiber sensors for electric industry,” Proc. SPIE 798, 258–266 (1987).

T. Yoshino and M. Yokota, “Optical current sensors,” in Frontiers in Optical Technology: Materials and Devices, P. K. Choudhury and O. N. Singh, eds. (Nova Science, 2007), pp. 273–287.

Zhang, H.

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Zhang, P.

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Zhao, J.

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Zhou, W.

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Power Delivery (1)

J. Blake, P. Tantaswadi, and R. T. de Carvalho, “In-line Sagnac interferometer current sensor,” IEEE Trans. Power Delivery 11, 116–121 (1996).
[CrossRef]

J. Lightwave Technol. (3)

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path optical heterodyne fiber sensors,” J. Lightwave Technol. 10, 503–513 (1992).
[CrossRef]

C. Li, X. Cui, and T. Yoshino, “Optical electric-power sensor by use of one bismuth germanate crystal,” J. Lightwave Technol. 21, 1328–1333 (2003).
[CrossRef]

C. Li and T. Yoshino, “Optical voltage sensor based on electrooptic crystal multiplier,” J. Lightwave Technol. 20, 843–849 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

N. E. Fisher and D. A. Jackson, “Improving the sensitivity of a Faraday current sensor by varying its operating point,” Meas. Sci. Technol. 6, 1508–1518 (1995).
[CrossRef]

Opt. Commun. (2)

F. G. P. Lecona, V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “Fiber optic voltage sensor with optically controlled sensitivity,” Opt. Commun. 187, 135–140 (2001).
[CrossRef]

C. Li, “Stepped polarization states: representation and its applications to optical sensing and measurement,” Opt. Commun. 281, 2033–2039 (2008).
[CrossRef]

Opt. Eng. (1)

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of detachable bulk-optic Faraday effect current clamp,” Opt. Eng. 40, 914–920, (2001).
[CrossRef]

Proc. SPIE (2)

T. Yoshino, “Optical fiber sensors for electric industry,” Proc. SPIE 798, 258–266 (1987).

M. Wang, W. Zhou, P. Zhang, J. Zhao, H. Zhang, and P. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I (2007).
[CrossRef]

Sensor Actuator A (1)

C. Li and X. Cui, “An optical voltage and current sensor with electrically switchable quarter waveplate,” Sensor Actuator A 126, 62–67 (2006).
[CrossRef]

Other (1)

T. Yoshino and M. Yokota, “Optical current sensors,” in Frontiers in Optical Technology: Materials and Devices, P. K. Choudhury and O. N. Singh, eds. (Nova Science, 2007), pp. 273–287.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Optical sensing unit of the magneto-optic sensor using single bismuth germanate (BGO) crystal, where P is a polarizer, QW is a quarter-wave plate, PBS is a polarization beam splitter, um(t) is a modulating voltage, and i(t) is a measurand current.

Fig. 2.
Fig. 2.

Sensing signal m as a function of Um and I in the ranges of 135V<Um<135V and 25A<I<25A.

Fig. 3.
Fig. 3.

Sensing signal m as a function of I from 100A to 100 A under different modulating voltages Um.

Fig. 4.
Fig. 4.

(a) Experimental setup for the magneto-optic sensor with electrically adjustable sensitivity by using single BGO crystal, where LD is a diode laser, SMF is single-mode fiber, POF is plastic optical fiber, and PD is photodetector; .(b) Crystalline orientations of the BGO crystal, directions of measurand magnetic field H and applied modulating voltage um(t).

Fig. 5.
Fig. 5.

Waveform of uo(t) for the product signal of the 1 kHz square-wave modulating voltage um(t)=±100s(t)V and the sinusoidal current i(t)=7.07sin(100πt)A.

Fig. 6.
Fig. 6.

Typical waveforms of uo(t) for product signals of the 1 kHz square-wave modulating voltage um(t)=150s(t)V and three different measurand dc currents (a) I=0; (b) I=5A; (c) I=5A.

Fig. 7.
Fig. 7.

Uncertainty of dc current measurement from 10A to 10 A under modulating voltage um(t)=150s(t)V.

Fig. 8.
Fig. 8.

Experimental data of output voltage Uopp versus dc current I in the range of 0.1A10A under three different modulating voltages: Um=37.5V, 100 V, and 150 V.

Fig. 9.
Fig. 9.

Simulated output sensing signal m as a function of Γ and Φ in the ranges of π<Γ<π and 0.5π<Φ<0.5π, or as a function of Um and I in the ranges of 1610V<Um<1610V and 301A<I<301A.

Fig. 10.
Fig. 10.

Nonlinear dependence of the sensing signal m on the measurand Φ (or I) for different values of Γ (or Um), compared with the typical sensing signal of conventional magneto-optic sensor (curve f), sin(2Φ).

Fig. 11.
Fig. 11.

Measurement sensitivity Sd as a function of Γ (or Um) in the range of (π,π), and the monotonic measurement range of Φ (or I) between the curves ABC and ABC.

Fig. 12.
Fig. 12.

Monotonic sensitivity-adjusting range for Γ (or Um) between the curves DE and DE.

Fig. 13.
Fig. 13.

Nonlinear error of the proposed sensor Δ versus Θ, or that of the previous current sensor δ versus Φ.

Fig. 14.
Fig. 14.

Approximate linear operating ranges of Γ and Φ for given nonlinear errors Δ<1% and Δ<2%.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ΓC1um(t),
C1=(2πno3r41l)/(λ0h),
Φμ0VlH(t)=C2i(t),
C2=μ0Vnl,
m=IoxIoyIox+Ioy=(sinΘΘ)2ΓΦ,
Θ=[(Γ/2)2+Φ2]1/2,
mΓΦC1μ0Vlum(t)H(t)=C1C2um(t)i(t).
Sd=dm/dI=C1C2Um,
uo(t)A1m=A1C1C2Ums(t)i(t)=A1Sds(t)i(t),
Δ=|(mm)/m|=1(sinΘ/Θ)2,
Φm2+(Sd/2)20.173620.03.
1UmdUmdT=(1C1dC1dT+1C2dC2dT).
ΔUm=Um(1no3r41d(no3r41)dT+1VdVdT)ΔT.
ΔUm7.74×104UmΔT/°C.

Metrics