Abstract

A broadband mid-infrared Mueller matrix ellipsometer is described based on two photoelastic modulators and a step-scan interferometer. The data are analyzed using a combination hardware–software double Fourier transformation. Obtaining spectra of the Mueller matrix elements requires that the infrared wavelength-dependent retardation amplitude of the modulators be known through calibration and subsequently incorporated into the data processing. The spectroscopic capability of the instrument is demonstrated in transmission and reflection geometries by the measured Mueller matrices of air, an anisotropic quartz crystal, and the ZnSe–water interface, each from 25004000cm1.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. L. Deibler and M. H. Smith, “Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry,” Appl. Opt. 40, 3659–3667 (2001).
    [CrossRef]
  2. J. Bremer, O. Hunderi, K. Fanping, T. Skauli, and E. Wold, “Infrared ellipsometer for the study of surface, thin films, and superlattices,” Appl. Opt. 31, 471–478 (1992).
    [CrossRef]
  3. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).
  4. A. Röseler, “Spectroscopic ellipsometry in the infrared,” Infra. Phys. 21, 349–355 (1981).
    [CrossRef]
  5. A. Röseler, “IR spectroscopic ellipsometry: instrumentation and details,” Thin Solid Films 234, 307–313 (1993).
    [CrossRef]
  6. A. Röseler, Infrared Spectroscopic Ellipsometry (Wiley-VCH Verlag GmbH, 1990).
  7. T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
    [CrossRef]
  8. K. Q. Zhang and Y.-h. Yen, “Determining optical constants using an infrared ellipsometer,” Appl. Opt. 28, 2929–2934 (1989).
    [CrossRef]
  9. T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
    [CrossRef]
  10. B. Drevillon, “Spectroscopic ellipsometry in the infrared range,” Thin Solid Films 313, 625–630 (1998).
    [CrossRef]
  11. G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
    [CrossRef]
  12. E. Garcia-Caurel, E. Bertran, and A. Canillas, “Optimized calibration method for Fourier transform infrared phase modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
    [CrossRef]
  13. R. T. Graf, F. Eng, J. L. Koenig, and H. Ishida, “Polarization modulation Fourier transform infrared ellipsometry of thin films,” Appl. Spectrosc. 40, 498–503 (1986).
  14. M. J. Dignam and M. D. Baker, “Analysis of a polarizing Michelson interferometer for dual beam Fourier transform infrared, circular dichroism infrared, and reflectance ellipsometric infrared spectroscopies,” Appl. Spectrosc. 35, 186–193 (1981).
    [CrossRef]
  15. A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
    [CrossRef]
  16. T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
    [CrossRef]
  17. V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
    [CrossRef]
  18. T. Hofmann, V. Gottschalch, and M. Schubert, “Dielectric anisotropy and phonon modes of ordered indirect-gap Al0.52In0.48P studied by far-infrared ellipsometry,” Appl. Phys. Lett. 91, 121908 (2007).
    [CrossRef]
  19. T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt-ordered Ga0.52In0.48P,” Phys. Rev. B 66, 195204 (2002).
    [CrossRef]
  20. T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
    [CrossRef]
  21. T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
    [CrossRef]
  22. J. Kircher, R. Henn, M. Cardona, P. L. Richards, and G. P. Williams, “Far-infrared ellipsometry using synchrotron radiation,” J. Opt. Soc. Am. B 14, 705–712 (1997).
    [CrossRef]
  23. T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
    [CrossRef]
  24. T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
    [CrossRef]
  25. T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
    [CrossRef]
  26. T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
    [CrossRef]
  27. S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
    [CrossRef]
  28. B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
    [CrossRef]
  29. G. E. Jellison and F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
    [CrossRef]
  30. M. W. Wang, F. H. Tsai, and Y. F. Chao, “In situ calibration technique for photoelastic modulator ellipsometry,” Thin Solid Films 455, 78–83 (2004).
    [CrossRef]
  31. B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
    [CrossRef]
  32. T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).
  33. M. J. Green, B. J. Barner, and R. M. Corn, “Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers,” Rev. Sci. Instrum. 62, 1426–1430 (1991).
    [CrossRef]
  34. R. Mendelson, J. W. Brauner, and A. Gericke, “External infrared absorption spectrometry of monolayer films at the air–water interface,” Annu. Rev. Phys. Chem. 46, 305–334 (1995).
    [CrossRef]
  35. T. Buffeteau, B. Desbat, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis,” Appl. Spectrosc. 45, 380–389 (1991).
    [CrossRef]
  36. A. E. Dowrey and C. Marcott, “A double-modulation Fourier transform infrared approach to studying adsorbates on metal surfaces,” Appl. Spectrosc. 36, 414–416 (1982).
    [CrossRef]
  37. D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
    [CrossRef]
  38. D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
    [CrossRef]
  39. T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
    [CrossRef]
  40. L. A. Nafie, H. Buijs, A. Rilling, X. Cao, and R. K. Dukor, “Dual source Fourier transform polarization modulation spectroscopy: an improved method for the measurement of circular and linear dichroism,” Appl. Spectrosc. 58, 647–654 (2004).
    [CrossRef]
  41. D. Tsankov, T. Eggimann, and H. Wieser, “Alternative design for improved FT-IR/VCD capabilities,” Appl. Spectrosc. 49, 132–138 (1995).
    [CrossRef]
  42. F. A. Modine, G. E. Jellison, and G. R. Gruzalski, “Errors in ellipsometry measurements made with a photoelastic modulator,” J. Opt. Soc. Am. 73, 892–900 (1983).
    [CrossRef]
  43. E. Wold and J. Bremer, “Mueller matrix analysis of infrared ellipsometry,” Appl. Opt. 33, 5982–5993 (1994).
    [CrossRef]
  44. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
    [CrossRef]
  45. G. E. Jellison, C. O. Griffiths, D. E. Holcomb, and C. M. Rouleau, “Transmission two-modulator generalized ellipsometry measurements,” Appl. Opt. 41, 6555–6566 (2002).
    [CrossRef]
  46. R. Anderson, “Measurement of Mueller matrices,” Appl. Opt. 31, 11–13 (1992).
    [CrossRef]
  47. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997).
    [CrossRef]
  48. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997).
    [CrossRef]
  49. T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
    [CrossRef]
  50. T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
    [CrossRef]
  51. T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
    [CrossRef]
  52. J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, “Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement,” Meas. Sci. Technol. 8, 484–492 (1997).
    [CrossRef]
  53. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
    [CrossRef]
  54. G. E. Jellison and F. A. Modine, “Two modulator generalized ellipsometer for complete Mueller matrix measurement,” U.S. patent 5,956,147 (21Sept.1999).
  55. R. J. Javeri, “Frequency subtractor,” U.S. patent 4,683,437 (28July1987).
  56. M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).
  57. T. C. Oakberg, “Using a mechanical chopper with a PEM to measure vdc,” http://www.hindsinstruments.com/wp-content/uploads/Mechanical_Chopper_and_PEM.pdf.
  58. W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands in quartz,” Phys. Rev. 121, 1324–1335 (1961).
    [CrossRef]
  59. H. R. Philipp, Handbook of Optical Constants (Academic, 1985), pp. 719–747.
  60. K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
    [CrossRef]
  61. K. C. Jena and D. K. Hore, “Water structure at solid surfaces and its implications for biomolecule adsorption,” Phys. Chem. Chem. Phys. 12, 14383–14404 (2010).
    [CrossRef]
  62. K. Hermansson, S. Knuts, and J. Lindgren, “The OH vibrational spectrum of liquid water from combined ab initio and Monte Carlo calculations,” J. Chem. Phys. 95, 7486–7496 (1991).
    [CrossRef]
  63. H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
    [CrossRef]
  64. D. Segelstein, “The complex refractive index of water,” Ph.D. thesis (University of Missouri–Kansas City, 1981).

2011 (6)

A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

2010 (2)

K. C. Jena and D. K. Hore, “Water structure at solid surfaces and its implications for biomolecule adsorption,” Phys. Chem. Chem. Phys. 12, 14383–14404 (2010).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

2009 (2)

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

2008 (2)

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

2007 (2)

T. Hofmann, V. Gottschalch, and M. Schubert, “Dielectric anisotropy and phonon modes of ordered indirect-gap Al0.52In0.48P studied by far-infrared ellipsometry,” Appl. Phys. Lett. 91, 121908 (2007).
[CrossRef]

T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
[CrossRef]

2006 (2)

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

2004 (4)

M. W. Wang, F. H. Tsai, and Y. F. Chao, “In situ calibration technique for photoelastic modulator ellipsometry,” Thin Solid Films 455, 78–83 (2004).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[CrossRef]

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

L. A. Nafie, H. Buijs, A. Rilling, X. Cao, and R. K. Dukor, “Dual source Fourier transform polarization modulation spectroscopy: an improved method for the measurement of circular and linear dichroism,” Appl. Spectrosc. 58, 647–654 (2004).
[CrossRef]

2003 (1)

T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
[CrossRef]

2002 (2)

T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt-ordered Ga0.52In0.48P,” Phys. Rev. B 66, 195204 (2002).
[CrossRef]

G. E. Jellison, C. O. Griffiths, D. E. Holcomb, and C. M. Rouleau, “Transmission two-modulator generalized ellipsometry measurements,” Appl. Opt. 41, 6555–6566 (2002).
[CrossRef]

2001 (1)

2000 (2)

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).

1999 (3)

E. Garcia-Caurel, E. Bertran, and A. Canillas, “Optimized calibration method for Fourier transform infrared phase modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
[CrossRef]

H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
[CrossRef]

1998 (2)

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
[CrossRef]

B. Drevillon, “Spectroscopic ellipsometry in the infrared range,” Thin Solid Films 313, 625–630 (1998).
[CrossRef]

1997 (4)

1995 (2)

D. Tsankov, T. Eggimann, and H. Wieser, “Alternative design for improved FT-IR/VCD capabilities,” Appl. Spectrosc. 49, 132–138 (1995).
[CrossRef]

R. Mendelson, J. W. Brauner, and A. Gericke, “External infrared absorption spectrometry of monolayer films at the air–water interface,” Annu. Rev. Phys. Chem. 46, 305–334 (1995).
[CrossRef]

1994 (3)

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

E. Wold and J. Bremer, “Mueller matrix analysis of infrared ellipsometry,” Appl. Opt. 33, 5982–5993 (1994).
[CrossRef]

1993 (2)

1992 (2)

1991 (3)

K. Hermansson, S. Knuts, and J. Lindgren, “The OH vibrational spectrum of liquid water from combined ab initio and Monte Carlo calculations,” J. Chem. Phys. 95, 7486–7496 (1991).
[CrossRef]

T. Buffeteau, B. Desbat, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis,” Appl. Spectrosc. 45, 380–389 (1991).
[CrossRef]

M. J. Green, B. J. Barner, and R. M. Corn, “Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers,” Rev. Sci. Instrum. 62, 1426–1430 (1991).
[CrossRef]

1990 (2)

B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
[CrossRef]

G. E. Jellison and F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
[CrossRef]

1989 (1)

1986 (1)

1983 (1)

1982 (2)

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

A. E. Dowrey and C. Marcott, “A double-modulation Fourier transform infrared approach to studying adsorbates on metal surfaces,” Appl. Spectrosc. 36, 414–416 (1982).
[CrossRef]

1981 (2)

1961 (1)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands in quartz,” Phys. Rev. 121, 1324–1335 (1961).
[CrossRef]

Agarwal, K. C.

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

Ahlborn, H.

H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
[CrossRef]

Anderson, R.

Baker, M. D.

Barner, B. J.

M. J. Green, B. J. Barner, and R. M. Corn, “Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers,” Rev. Sci. Instrum. 62, 1426–1430 (1991).
[CrossRef]

B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
[CrossRef]

Bertran, E.

E. Garcia-Caurel, E. Bertran, and A. Canillas, “Optimized calibration method for Fourier transform infrared phase modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

Besbes, S.

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

Blaudez, D.

T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
[CrossRef]

Bokobza, L.

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

Boosalis, A.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

Brauner, J. W.

R. Mendelson, J. W. Brauner, and A. Gericke, “External infrared absorption spectrometry of monolayer films at the air–water interface,” Annu. Rev. Phys. Chem. 46, 305–334 (1995).
[CrossRef]

Bremer, J.

Buffeteau, T.

T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
[CrossRef]

T. Buffeteau, B. Desbat, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis,” Appl. Spectrosc. 45, 380–389 (1991).
[CrossRef]

Buijs, H.

Canillas, A.

E. Garcia-Caurel, E. Bertran, and A. Canillas, “Optimized calibration method for Fourier transform infrared phase modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

Cao, X.

Cardona, M.

Chao, Y. F.

M. W. Wang, F. H. Tsai, and Y. F. Chao, “In situ calibration technique for photoelastic modulator ellipsometry,” Thin Solid Films 455, 78–83 (2004).
[CrossRef]

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Chen, L.-C.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

Chen, L.-Y.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Chen, S. S.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Chen, Y.-L.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Compain, E.

Corn, R. M.

M. J. Green, B. J. Barner, and R. M. Corn, “Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers,” Rev. Sci. Instrum. 62, 1426–1430 (1991).
[CrossRef]

B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
[CrossRef]

Cornut, J. C.

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
[CrossRef]

Covert, P. A.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

Dalby, J. L.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

Daniel, B.

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

Darakchieva, V.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

de Hoog, F. J.

J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, “Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement,” Meas. Sci. Technol. 8, 484–492 (1997).
[CrossRef]

De Martino, A.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[CrossRef]

Deibler, L. L.

den Boer, J. H. W. G.

J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, “Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement,” Meas. Sci. Technol. 8, 484–492 (1997).
[CrossRef]

Desbat, B.

T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
[CrossRef]

T. Buffeteau, B. Desbat, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis,” Appl. Spectrosc. 45, 380–389 (1991).
[CrossRef]

Dignam, M. J.

Dowrey, A. E.

Drevillon, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[CrossRef]

E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
[CrossRef]

B. Drevillon, “Spectroscopic ellipsometry in the infrared range,” Thin Solid Films 313, 625–630 (1998).
[CrossRef]

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

Dukor, R. K.

Eastman, L. F.

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

Eggimann, T.

Eng, F.

Escafre, N.

Esquinazi, P.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

Excafre, N.

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

Fanping, K.

Garcia-Caurel, E.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[CrossRef]

E. Garcia-Caurel, E. Bertran, and A. Canillas, “Optimized calibration method for Fourier transform infrared phase modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

Gaskill, D. K.

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

Gericke, A.

R. Mendelson, J. W. Brauner, and A. Gericke, “External infrared absorption spectrometry of monolayer films at the air–water interface,” Annu. Rev. Phys. Chem. 46, 305–334 (1995).
[CrossRef]

Gottschalch, V.

T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Dielectric anisotropy and phonon modes of ordered indirect-gap Al0.52In0.48P studied by far-infrared ellipsometry,” Appl. Phys. Lett. 91, 121908 (2007).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt-ordered Ga0.52In0.48P,” Phys. Rev. B 66, 195204 (2002).
[CrossRef]

Graf, R. T.

Green, M. J.

M. J. Green, B. J. Barner, and R. M. Corn, “Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers,” Rev. Sci. Instrum. 62, 1426–1430 (1991).
[CrossRef]

B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
[CrossRef]

Griffiths, C. O.

Gruzalski, G. R.

Henn, R.

Hermansson, K.

K. Hermansson, S. Knuts, and J. Lindgren, “The OH vibrational spectrum of liquid water from combined ab initio and Monte Carlo calculations,” J. Chem. Phys. 95, 7486–7496 (1991).
[CrossRef]

Herzinger, C. M.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
[CrossRef]

Hetterich, M.

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

Hofmann, T.

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
[CrossRef]

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Dielectric anisotropy and phonon modes of ordered indirect-gap Al0.52In0.48P studied by far-infrared ellipsometry,” Appl. Phys. Lett. 91, 121908 (2007).
[CrossRef]

T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
[CrossRef]

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt-ordered Ga0.52In0.48P,” Phys. Rev. B 66, 195204 (2002).
[CrossRef]

Holcomb, D. E.

Hore, D. K.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

K. C. Jena and D. K. Hore, “Water structure at solid surfaces and its implications for biomolecule adsorption,” Phys. Chem. Chem. Phys. 12, 14383–14404 (2010).
[CrossRef]

Hsiao, C.-L.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

Hunderi, O.

Ishida, H.

Javeri, R. J.

R. J. Javeri, “Frequency subtractor,” U.S. patent 4,683,437 (28July1987).

Jellison, G. E.

Jena, K. C.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

K. C. Jena and D. K. Hore, “Water structure at solid surfaces and its implications for biomolecule adsorption,” Phys. Chem. Chem. Phys. 12, 14383–14404 (2010).
[CrossRef]

Ji, X.

H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
[CrossRef]

Kircher, J.

Kleinman, D. A.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands in quartz,” Phys. Rev. 121, 1324–1335 (1961).
[CrossRef]

Klingshirn, C.

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

Knuts, S.

K. Hermansson, S. Knuts, and J. Lindgren, “The OH vibrational spectrum of liquid water from combined ab initio and Monte Carlo calculations,” J. Chem. Phys. 95, 7486–7496 (1991).
[CrossRef]

Koenig, J. L.

Krahmer, C.

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

Kroesen, G. M. W.

J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, “Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement,” Meas. Sci. Technol. 8, 484–492 (1997).
[CrossRef]

Kühne, P.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

Laude, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[CrossRef]

Leibiger, G.

T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
[CrossRef]

Leou, K. C.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Lin, T. L.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Lindgren, J.

K. Hermansson, S. Knuts, and J. Lindgren, “The OH vibrational spectrum of liquid water from combined ab initio and Monte Carlo calculations,” J. Chem. Phys. 95, 7486–7496 (1991).
[CrossRef]

Liu, T.-W.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

Liu, Y. W.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Lu, H.

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

Marbot, R.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

Marcott, C.

Mendelson, R.

R. Mendelson, J. W. Brauner, and A. Gericke, “External infrared absorption spectrometry of monolayer films at the air–water interface,” Annu. Rev. Phys. Chem. 46, 305–334 (1995).
[CrossRef]

Modine, F. A.

Monemar, B.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

Moore, P. B.

H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
[CrossRef]

Nafati, M.

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

Nafie, L. A.

Nanishi, Y.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

Oakberg, T. C.

T. C. Oakberg, “Using a mechanical chopper with a PEM to measure vdc,” http://www.hindsinstruments.com/wp-content/uploads/Mechanical_Chopper_and_PEM.pdf.

Pepper, S. V.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
[CrossRef]

Perrin, J.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

Pezolet, M.

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
[CrossRef]

Philipp, H. R.

H. R. Philipp, Handbook of Optical Constants (Academic, 1985), pp. 719–747.

Pietzonka, I.

T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
[CrossRef]

Poirier, S.

Richards, P. L.

Rilling, A.

Röseler, A.

A. Röseler, “IR spectroscopic ellipsometry: instrumentation and details,” Thin Solid Films 234, 307–313 (1993).
[CrossRef]

A. Röseler, “Spectroscopic ellipsometry in the infrared,” Infra. Phys. 21, 349–355 (1981).
[CrossRef]

A. Röseler, Infrared Spectroscopic Ellipsometry (Wiley-VCH Verlag GmbH, 1990).

Rouleau, C. M.

Saez, E. I.

B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
[CrossRef]

Schade, U.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

Schaff, W. J.

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

Schmidt, D.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

Schöche, S.

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

Schubert, E.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

Schubert, M.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Dielectric anisotropy and phonon modes of ordered indirect-gap Al0.52In0.48P studied by far-infrared ellipsometry,” Appl. Phys. Lett. 91, 121908 (2007).
[CrossRef]

T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
[CrossRef]

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt-ordered Ga0.52In0.48P,” Phys. Rev. B 66, 195204 (2002).
[CrossRef]

M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).

Segelstein, D.

D. Segelstein, “The complex refractive index of water,” Ph.D. thesis (University of Missouri–Kansas City, 1981).

Shi, J.

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

Šik, J.

A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
[CrossRef]

Skauli, T.

Skomski, R.

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

Smith, M. H.

Space, B.

H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands in quartz,” Phys. Rev. 121, 1324–1335 (1961).
[CrossRef]

Streubel, K.

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

Takagi, Y.

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

Tedesco, J. L.

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

Thompson, D. W.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
[CrossRef]

Tiwald, T. E.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
[CrossRef]

Tsai, F. H.

M. W. Wang, F. H. Tsai, and Y. F. Chao, “In situ calibration technique for photoelastic modulator ellipsometry,” Thin Solid Films 455, 78–83 (2004).
[CrossRef]

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Tsankov, D.

Turlet, J. M.

T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Escafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Appl. Spectrosc. 47, 869–874 (1993).
[CrossRef]

T. Buffeteau, B. Desbat, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis,” Appl. Spectrosc. 45, 380–389 (1991).
[CrossRef]

Violet, A.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

Wand, S.-Y.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Wang, M. W.

M. W. Wang, F. H. Tsai, and Y. F. Chao, “In situ calibration technique for photoelastic modulator ellipsometry,” Thin Solid Films 455, 78–83 (2004).
[CrossRef]

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Wieser, H.

Williams, G. P.

Wold, E.

Woolam, J. A.

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

Woollam, J. A.

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
[CrossRef]

Xia, G.-Q.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Yang, Y.-M.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Yen, Y.-h.

Zhang, K. Q.

Zhang, R.-J.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Zhao, H.-B.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Zheng, Y.-X.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Zhou, S.-M.

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. Mendelson, J. W. Brauner, and A. Gericke, “External infrared absorption spectrometry of monolayer films at the air–water interface,” Annu. Rev. Phys. Chem. 46, 305–334 (1995).
[CrossRef]

Appl. Opt. (11)

T. Buffeteau, B. Desbat, D. Blaudez, and J. M. Turlet, “Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra,” Appl. Opt. 54, 1646–1650 (2000).

G. E. Jellison and F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
[CrossRef]

L. L. Deibler and M. H. Smith, “Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry,” Appl. Opt. 40, 3659–3667 (2001).
[CrossRef]

J. Bremer, O. Hunderi, K. Fanping, T. Skauli, and E. Wold, “Infrared ellipsometer for the study of surface, thin films, and superlattices,” Appl. Opt. 31, 471–478 (1992).
[CrossRef]

K. Q. Zhang and Y.-h. Yen, “Determining optical constants using an infrared ellipsometer,” Appl. Opt. 28, 2929–2934 (1989).
[CrossRef]

E. Wold and J. Bremer, “Mueller matrix analysis of infrared ellipsometry,” Appl. Opt. 33, 5982–5993 (1994).
[CrossRef]

E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
[CrossRef]

G. E. Jellison, C. O. Griffiths, D. E. Holcomb, and C. M. Rouleau, “Transmission two-modulator generalized ellipsometry measurements,” Appl. Opt. 41, 6555–6566 (2002).
[CrossRef]

R. Anderson, “Measurement of Mueller matrices,” Appl. Opt. 31, 11–13 (1992).
[CrossRef]

G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997).
[CrossRef]

G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997).
[CrossRef]

Appl. Phys. Lett. (9)

T. Hofmann, D. Schmidt, A. Boosalis, P. Kühne, R. Skomski, C. M. Herzinger, J. A. Woollam, M. Schubert, and E. Schubert, “THz dielectric anisotropy of metal slanted columnar thin films,” Appl. Phys. Lett. 99, 081903 (2011).
[CrossRef]

T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Hole diffusion profile in a p−p+ silicon homojunction determined by terahertz and mid-infrared spectroscopic ellipsometry,” Appl. Phys. Lett. 95, 032102 (2009).
[CrossRef]

V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, “Electron accumulation at nonpolar and semipolar surfaces of wurtzite InN from generalized infrared ellipsometry,” Appl. Phys. Lett. 95, 202103 (2009).
[CrossRef]

T. Hofmann, V. Gottschalch, and M. Schubert, “Dielectric anisotropy and phonon modes of ordered indirect-gap Al0.52In0.48P studied by far-infrared ellipsometry,” Appl. Phys. Lett. 91, 121908 (2007).
[CrossRef]

T. Hofmann, M. Schubert, C. M. Herzinger, and I. Pietzonka, “Far-infrared-magneto-optic ellipsometry characterization of free-charge-carrier properties in highly disordered n-type Al0.19Ga0.33In0.48P,” Appl. Phys. Lett. 82, 3463–3465 (2003).
[CrossRef]

T. Hofmann, U. Schade, K. C. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. M. Herzinger, and M. Schubert, “Conduction-band electron effective mass in Zn0.87Mn0.13Se measured by terahertz and far-infrared magnetooptic ellipsometry,” Appl. Phys. Lett. 88, 042105 (2006).
[CrossRef]

T. Hofmann, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woolam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, “Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry,” Appl. Phys. Lett. 98, 041906 (2011).
[CrossRef]

S. Schöche, J. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Appl. Phys. Lett. 98, 092103 (2011).
[CrossRef]

T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, “Electron effective mass and phonon modes in GaAs incorporating boron and indium,” Appl. Phys. Lett. 90, 182110 (2007).
[CrossRef]

Appl. Spectrosc. (7)

Infra. Phys. (1)

A. Röseler, “Spectroscopic ellipsometry in the infrared,” Infra. Phys. 21, 349–355 (1981).
[CrossRef]

J. Am. Chem. Soc. (1)

B. J. Barner, M. J. Green, E. I. Saez, and R. M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” J. Am. Chem. Soc. 63, 55–56 (1990).
[CrossRef]

J. Chem. Phys. (2)

K. Hermansson, S. Knuts, and J. Lindgren, “The OH vibrational spectrum of liquid water from combined ab initio and Monte Carlo calculations,” J. Chem. Phys. 95, 7486–7496 (1991).
[CrossRef]

H. Ahlborn, X. Ji, B. Space, and P. B. Moore, “A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water,” J. Chem. Phys. 111, 10622–10632 (1999).
[CrossRef]

J. Electron. Mater. (1)

T. Hofmann, V. Darakchieva, B. Monemar, H. Lu, W. J. Schaff, and M. Schubert, “Optical Hall effect in hexagonal InN,” J. Electron. Mater. 37, 611–615 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).

Meas. Sci. Technol. (1)

J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, “Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement,” Meas. Sci. Technol. 8, 484–492 (1997).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

K. C. Jena and D. K. Hore, “Water structure at solid surfaces and its implications for biomolecule adsorption,” Phys. Chem. Chem. Phys. 12, 14383–14404 (2010).
[CrossRef]

Phys. Rev. (1)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands in quartz,” Phys. Rev. 121, 1324–1335 (1961).
[CrossRef]

Phys. Rev. B (1)

T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt-ordered Ga0.52In0.48P,” Phys. Rev. B 66, 195204 (2002).
[CrossRef]

Phys. Status Solidi A (1)

T. Hofmann, C. M. Herzinger, C. Krahmer, K. Streubel, and M. Schubert, “The optical Hall effect,” Phys. Status Solidi A 205, 779–783 (2008).
[CrossRef]

Polymer (1)

T. Buffeteau, B. Desbat, S. Besbes, M. Nafati, and L. Bokobza, “Molecular orientation studies in polymer films by polarization modulation FTIR spectroscopy,” Polymer 35, 2538–2541 (1994).
[CrossRef]

Rev. Sci. Instrum. (5)

M. J. Green, B. J. Barner, and R. M. Corn, “Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers,” Rev. Sci. Instrum. 62, 1426–1430 (1991).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woolam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum. 81, 023101 (2010).
[CrossRef]

B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[CrossRef]

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[CrossRef]

G.-Q. Xia, R.-J. Zhang, Y.-L. Chen, H.-B. Zhao, S.-Y. Wand, S.-M. Zhou, Y.-X. Zheng, Y.-M. Yang, and L.-Y. Chen, “New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms,” Rev. Sci. Instrum. 71, 2677–2683 (2000).
[CrossRef]

Thin Solid Films (9)

E. Garcia-Caurel, E. Bertran, and A. Canillas, “Optimized calibration method for Fourier transform infrared phase modulated ellipsometry,” Thin Solid Films 354, 187–194 (1999).
[CrossRef]

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313, 718–721 (1998).
[CrossRef]

B. Drevillon, “Spectroscopic ellipsometry in the infrared range,” Thin Solid Films 313, 625–630 (1998).
[CrossRef]

A. Röseler, “IR spectroscopic ellipsometry: instrumentation and details,” Thin Solid Films 234, 307–313 (1993).
[CrossRef]

T. Hofmann, C. M. Herzinger, J. L. Tedesco, D. K. Gaskill, J. A. Woollam, and M. Schubert, “Terahertz ellipsometry and terahertz optical-Hall effect,” Thin Solid Films 519, 2593–2600 (2011).
[CrossRef]

M. W. Wang, F. H. Tsai, and Y. F. Chao, “In situ calibration technique for photoelastic modulator ellipsometry,” Thin Solid Films 455, 78–83 (2004).
[CrossRef]

A. Boosalis, T. Hofmann, J. Šik, and M. Schubert, “Free-charge carrier profile of iso- and aniso-type Si homojunctions determined by terahertz and mid-infrared ellipsometry,” Thin Solid Films 519, 2604–2607 (2011).
[CrossRef]

D. Blaudez, T. Buffeteau, J. C. Cornut, B. Desbat, N. Excafre, M. Pezolet, and J. M. Turlet, “Polarization modulation FT-IR spectroscopy of a spread monolayer at the air/water interface,” Thin Solid Films 242, 146–150 (1994).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004).
[CrossRef]

Other (7)

G. E. Jellison and F. A. Modine, “Two modulator generalized ellipsometer for complete Mueller matrix measurement,” U.S. patent 5,956,147 (21Sept.1999).

R. J. Javeri, “Frequency subtractor,” U.S. patent 4,683,437 (28July1987).

T. C. Oakberg, “Using a mechanical chopper with a PEM to measure vdc,” http://www.hindsinstruments.com/wp-content/uploads/Mechanical_Chopper_and_PEM.pdf.

H. R. Philipp, Handbook of Optical Constants (Academic, 1985), pp. 719–747.

D. Segelstein, “The complex refractive index of water,” Ph.D. thesis (University of Missouri–Kansas City, 1981).

A. Röseler, Infrared Spectroscopic Ellipsometry (Wiley-VCH Verlag GmbH, 1990).

M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the instrument with sample in total internal reflection geometry showing the step-scan FTIR, chopper (C), wire-grid polarizer (P), first ZnSe PEM (PEM1, 37 kHz), sample (illustrated in TIR geometry), second ZnSe PEM (PEM2, 50 kHz), final wire-grid polarizer (analyzer, A), and a fast MCT detector. The PEM controller fundamental (ω0 and ω1) and second harmonic (2ω0 and 2ω1) signals are fed into a frequency synthesizer that generates the eight reference signals required for the lock-in demodulation. Demodulation at the chopper frequency is used as a measure of the DC signal.

Fig. 2.
Fig. 2.

Schematic of the circuit that was used to take the four input frequencies ω0, ω1, 2ω0, and 2ω1 and generate the eight frequencies at which the detector signal must be demodulated to yield the Mueller matrix elements.

Fig. 3.
Fig. 3.

Retardation amplitude as a function of IR energy. Results for the first PEM (ω0/2π=37kHz) appear as the bottom trace, and those of second PEM (ω1/2π=50kHz) are on the top trace.

Fig. 4.
Fig. 4.

Plots of J0(A) (solid black line), J1(A) (dotted line), J2(A) (narrow dashed line), and the product of Bessel functions J1(A)J2(A) (wide dashed lines).

Fig. 5.
Fig. 5.

Static retardation as a function of IR energy. A linear fit is applied to the results for the first PEM (ω0/2π=37kHz) indicated with the solid line, and the second PEM (ω1/2π=50kHz) is indicated with the dashed line.

Fig. 6.
Fig. 6.

Simulation of the raw data with the detector waveform plotted along the vertical axis, and the interferometer mirror position along the horizontal. Black indicates zero signal; white indicates the maximum signal. The crosshair position shows a sample waveform and mirror position slice.

Fig. 7.
Fig. 7.

Flow chart of the data acquisition algorithm, illustrating the sequence of events that takes place in order to measure all 16 elements of a sample’s Mueller matrix over a range of IR wavelengths.

Fig. 8.
Fig. 8.

IR spectra of the normalized Mueller matrix elements M12/M11 through M44/M11 from 25004000cm1 for transmission through air. Solid black lines indicate experimental data; solid gray lines indicate model results. Residuals are shown with dashed (blue) lines. Closer inspection of the data and residuals is enabled by plotting Mij=0 with dotted (red) lines.

Fig. 9.
Fig. 9.

IR spectra of the normalized Mueller matrix elements M21/M11 through M44/M11 from 25004000cm1 for transmission through a quartz crystal at normal incidence. Solid black lines indicate experimental data; solid gray lines indicate results from a fit to obtain Δφ at each IR energy. Residuals are shown with dashed (blue) lines. Closer inspection of the data and residuals is enabled by plotting Mij=0 with dotted (red) lines.

Fig. 10.
Fig. 10.

Birefringence as a function of IR energy as determined from our measurements (open circles), other published experimental data (closed circles), and a Sellmeier model (line).

Fig. 11.
Fig. 11.

IR spectra of the normalized Mueller matrix elements M21/M11 through M44/M11 from 25004000cm1 for total internal reflection at the ZnSe–water interface at 70°. Solid black lines indicate experimental data; solid gray lines indicate model results. Residuals are shown with dashed (blue) lines. Closer inspection of the data and residuals is enabled by plotting Mij=0 with dotted (red) lines.

Tables (1)

Tables Icon

Table 1. Eight Frequencies That Were Used to Demodulate the AC Components of the Signal Waveforma

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

s=[s0s1s2s3]=[ItotalI0I90I+45I45IrcpIlcp],
s12+s22+s32<s02,
M=[M11M12M13M14M21M22M23M24M31M32M33M34M41M42M43M44]
sout=M·sin.
Mij=MijM11,
δi(t)=Aicosωit+δi,
Pψ=Rψ·P0·Rψ,
P0=12[1100110000000000],
Rψ=[10000cos2ψsin2ψ00sin2ψcos2ψ00001].
Q0i=[1000010000Y(t)X(t)00X(t)Y(t)],
X(t)=sinδi(t)=2i=0J2i1(A)sin(2i1)ωt,
Y(t)=cosδi(t)=J0(A)+2i=1J2i(A)sin2iωt,
Jn(x)=1π0πcos(nπxsinθ)dθ.
sout=Aψ·Qψ(2)·M·Qψ(1)·Pψ·sin.
I(t)=s0,out(t)
I(t)=2k=0Rk[akcos(Ωkt)+bksin(Ωkt)],
R0(DC)=12[IDCIX0δ0J0(A0)+IY0Y1J0(A0)J0(A1)IX1δ1J0(A1)IX0Y1δ0J0(A0)J0(A1)+IY0J0(A0)+IY1J0(A1)IY0X1δ1J0(A1)J0(A0)],
R1(ω0ω1)=2[IX0X1J1(A0)J1(A1)+IY0X1J1(A0)J1(A1)δ0+IX0Y1J1(A0)J1(A1)δ1],
R2(2ω0ω1)=2[IX0X1J1(A1)δ0J2(A0)IY0X1J1(A1)J2(A0)IY0Y1J1(A1)δ1J2(A0)],
R3(2ω02ω1)=2[IX0Y1δ0J2(A0)J2(A1)IY0Y1J2(A0)J2(A1)+IY0X1δ1J2(A0)J2(A1)],
R4(ω0)=IX0J1(A0)+IY0Y1J1(A0)δ0J0(A1)+IY0J1(A0)δ0+IX0Y1J1(A0)J0(A1)IX0X1J1(A0)δ1J0(A1),
R5(ω1)=IX1J1(A1)IX0X1J1(A1)δ0J0(A0)+IY0X1J1(A1)J0(A0)+IY1J1(A1)δ1+IY0Y1J1(A1)δ1J0(A0),
R6(ω02ω1)=2[IY0Y1J1(A0)δ0J2(A1)+IX0Y1J1(A0)J2(A1)IX0X1J1(A0)δ1J2(A1)],
R7(2ω0)=IY0J2(A0)IX0Y1δ0J2(A0)J0(A1)IX0δ0J2(A0)+IY0Y1J2(A0)J0(A1)IY0X1δ1J2(A0)J0(A1),
R8(2ω1)=IY1J2(A1)IX0Y1δ0J0(A0)J2(A1)+IY0Y1J0(A0)J2(A1)IY0X1δ1J0(A0)J2(A1)IX1δ1J2(A1).
Δφ=2πdλ(neno),
Q0=[1000010000cosΔφsinΔφ00sinΔφcosΔφ].
M=Rθ·Q0·Rθ,
M=[1cos2ψ00cos2ψ10000sin2ψcosΔsin2ψsinΔ00sin2ψsinΔsin2ψcosΔ],
tanψeiΔ=rprs.

Metrics