Abstract

The volume scattering function (VSF) of particles in water depends on the particles’ size distribution and composition as well as their shape and internal structure. Inversion of the VSF thus provides information about the particle population. The commercially available LISST instrument measures the scattering at near forward angles to estimate the bulk size distribution of particles larger than about 1 μm. By using scattering over the full angular range (0°–180°), the recently improved VSF-inversion method [X. Zhang, M. Twardowski, and M. Lewis, Appl. Opt. 50, 1240 (2011). [CrossRef]  ] can characterize particles in terms of particle subpopulations, which are described by their unique size distribution and composition. Concurrent deployments of the Multispectral Volume Scattering Meter and the LISST in three coastal waters (i.e., Chesapeake Bay, Mobile Bay, and Monterey Bay) allowed us to compare the size distributions derived from these two different methods. We also obtained indirect validation of the results for submicrometer particles and for the composition of particles provided by the VSF-inversion method. For particle sizes ranging from 1 to 100 μm, the concentration was shown to vary over 10 orders of magnitude, and excellent agreement was found between the two methods with a mean relative difference less than 10% for the total size distributions. The inversion results also reproduced spectral variations in the shape of the VSF, although these spectral variations were not frequently observed in our study. The increased backscattering towards the shorter wavelengths was explained by the stronger influence of submicrometer particles affecting the backscattering. Based on published measurements of cell sizes and intracellular chlorophyll-a [Chl] concentrations over a wide range of phytoplankton species and strains, [Chl] was estimated for the inverted subpopulations that were identified as phytoplankton based on their refractive index and mean sizes. The estimated [Chl] agreed well with the fluorescence-based estimates in both magnitude and trend, thus reproducing a bloom event observed at a time series station.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Sharp, “Size classes of organic carbon in seawater,” Limnol. Oceanogr. 18, 441–447 (1973).
    [CrossRef]
  2. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
    [CrossRef]
  3. P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998).
    [CrossRef]
  4. C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
    [CrossRef]
  5. A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010).
    [CrossRef]
  6. D. A. Hansell, “DOC in the global ocean carbon cycle,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, eds. (Academic, 2002), pp. 685–715.
  7. P. W. Boyd and T. W. Trull, “Understanding the export of biogenic particles in oceanic waters: is there consensus?” Prog. Oceanogr. 72, 276–312 (2007).
    [CrossRef]
  8. D. W. R. Wallace and C. D. Wirick, “Large air-sea gas fluxes associated with breaking waves,” Nature 356, 694–696 (1992).
    [CrossRef]
  9. E. C. Monahan and H. G. Dam, “Bubbles: an estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106, 9377–9383 (2001).
    [CrossRef]
  10. G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
    [CrossRef]
  11. J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
    [CrossRef]
  12. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17, 1671–1678 (2009).
    [CrossRef]
  13. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17, 12685–12691 (2009).
    [CrossRef]
  14. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009).
    [CrossRef]
  15. X. Zhang, L. Hu, M. S. Twardowski, and J. M. Sullivan, “Scattering by solutions of major sea salts,” Opt. Express 17, 19580–19585 (2009).
    [CrossRef]
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  17. K. S. Shifrin, Physical Optics of Ocean Water, AIP Translation Series (Springer, 1988).
  18. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
    [CrossRef]
  19. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
    [CrossRef]
  20. A. Morel, “The scattering of light by seawater: experimental results and theorectical approach,” in Optics of the Sea (Interface and In-water Transmission and Imaging), North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development, Electromagnetic Wave Propagation Panel, Vol. 61 of AGARD Lecture Series (National Aeronautics and Space Administration, 1973), p. 171.
  21. R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
    [CrossRef]
  22. J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955).
    [CrossRef]
  23. S. D. Coston and N. George, “Particle sizing by inversion of the optical transform pattern,” Appl. Opt. 30, 4785–4794 (1991).
    [CrossRef]
  24. J. C. Knight, D. Ball, and G. N. Robertson, “Analytical inversion for laser diffraction spectrometry giving improved resolution and accuracy in size distribution,” Appl. Opt. 30, 4795–4799 (1991).
    [CrossRef]
  25. J. B. Riley, and Y. C. Agrawal, “Sampling and inversion of data in diffraction particle sizing,” Appl. Opt. 30, 4800–4817 (1991).
    [CrossRef]
  26. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000).
    [CrossRef]
  27. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
    [CrossRef]
  28. B. G. Krishnappan, “In situ size distribution of suspended particles in the Fraser River,” J. Hydraul. Eng. 126, 561–569 (2000).
    [CrossRef]
  29. T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
    [CrossRef]
  30. Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001).
    [CrossRef]
  31. J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
    [CrossRef]
  32. J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in Southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007).
    [CrossRef]
  33. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
    [CrossRef]
  34. C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
    [CrossRef]
  35. O. B. Brown and H. R. Gordon, “Size-refractive index distribution of clear coastal water particulates from light scattering,” Appl. Opt. 13, 2874–2881 (1974).
    [CrossRef]
  36. J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
    [CrossRef]
  37. J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
    [CrossRef]
  38. X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50, 1240–1259 (2011).
    [CrossRef]
  39. M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
    [CrossRef]
  40. H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
    [CrossRef]
  41. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean Technol. 20, 563 (2003).
    [CrossRef]
  42. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
    [CrossRef]
  43. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
    [CrossRef]
  44. D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. Part 1 40, 1459–1473 (1993).
    [CrossRef]
  45. J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
    [CrossRef]
  46. W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14, 3602–3615 (2006).
    [CrossRef]
  47. Y. C. Agrawal and O. A. Mikkelsen, “Empirical forward scattering phase functions from 0.08 to 16 deg. for randomly shaped terrigenous 1–21 μm sediment grains,” Opt. Express 17, 8805–8814 (2009).
    [CrossRef]
  48. Duke Scientific Corporation, “Index of Refraction,” Technical Note 007B (1996).
  49. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
    [CrossRef]
  50. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier Scientific, 1977), p. 243.
  51. B. Epstein, “The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution,” J. Franklin Inst. 244, 471–477 (1947).
    [CrossRef]
  52. F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
    [CrossRef]
  53. J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989).
    [CrossRef]
  54. J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237–13254 (1995).
    [CrossRef]
  55. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [CrossRef]
  56. A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
    [CrossRef]
  57. R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000).
    [CrossRef]
  58. M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
    [CrossRef]
  59. A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
    [CrossRef]
  60. C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).
  61. M. Jonasz, “Nonspherical sediment particles: comparison of size and volume distributions obtained with an optical and a resistive particle counter,” Mar. Geol. 78, 137–142(1987).
    [CrossRef]
  62. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra,” Appl. Opt. 49, 334–342 (2010).
    [CrossRef]
  63. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 530.
  64. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  65. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).
  66. M. A. Yurkin, and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).
    [CrossRef]
  67. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991).
    [CrossRef]
  68. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
    [CrossRef]
  69. X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
    [CrossRef]
  70. X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
    [CrossRef]
  71. L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994).
    [CrossRef]
  72. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
    [CrossRef]
  73. C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
    [CrossRef]
  74. S. Taguchi, “Relationship between photosynthesis and cell size of marine diatom,” J. Phycol. 12, 185–189 (1976).
    [CrossRef]
  75. T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
    [CrossRef]
  76. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249 (1996).
    [CrossRef]
  77. Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
    [CrossRef]
  78. S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010).
    [CrossRef]
  79. J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: analysis of clonal cultures,” Cytometry 10, 596–604 (1989).
    [CrossRef]
  80. J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989).
    [CrossRef]
  81. M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
    [CrossRef]
  82. F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005).
    [CrossRef]
  83. D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581–1591 (2005).
    [CrossRef]
  84. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
    [CrossRef]
  85. D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
    [CrossRef]
  86. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
    [CrossRef]
  87. S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988).
    [CrossRef]
  88. H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005).
    [CrossRef]
  89. Y. Huot and M. Babin, “Overview of fluorescence protocols: theory, basic concepts, and practice,” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, D. Suggett, M. A. Borowitzka, and O. Prasil, eds. (Springer, 2010), pp. 31–74.

2012 (1)

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

2011 (4)

H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
[CrossRef]

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

M. A. Yurkin, and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).
[CrossRef]

X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50, 1240–1259 (2011).
[CrossRef]

2010 (5)

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra,” Appl. Opt. 49, 334–342 (2010).
[CrossRef]

S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010).
[CrossRef]

A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010).
[CrossRef]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
[CrossRef]

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

2009 (8)

2008 (1)

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
[CrossRef]

2007 (4)

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

P. W. Boyd and T. W. Trull, “Understanding the export of biogenic particles in oceanic waters: is there consensus?” Prog. Oceanogr. 72, 276–312 (2007).
[CrossRef]

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in Southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007).
[CrossRef]

J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

2006 (1)

2005 (6)

J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
[CrossRef]

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005).
[CrossRef]

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005).
[CrossRef]

2004 (2)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

2003 (1)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean Technol. 20, 563 (2003).
[CrossRef]

2002 (3)

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

2001 (8)

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001).
[CrossRef]

J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

E. C. Monahan and H. G. Dam, “Bubbles: an estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106, 9377–9383 (2001).
[CrossRef]

2000 (3)

R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000).
[CrossRef]

B. G. Krishnappan, “In situ size distribution of suspended particles in the Fraser River,” J. Hydraul. Eng. 126, 561–569 (2000).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000).
[CrossRef]

1998 (3)

P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998).
[CrossRef]

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

1997 (1)

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

1996 (2)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249 (1996).
[CrossRef]

M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

1995 (1)

J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237–13254 (1995).
[CrossRef]

1994 (2)

J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
[CrossRef]

L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994).
[CrossRef]

1993 (1)

D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. Part 1 40, 1459–1473 (1993).
[CrossRef]

1992 (3)

M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

D. W. R. Wallace and C. D. Wirick, “Large air-sea gas fluxes associated with breaking waves,” Nature 356, 694–696 (1992).
[CrossRef]

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

1991 (5)

1989 (3)

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989).
[CrossRef]

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: analysis of clonal cultures,” Cytometry 10, 596–604 (1989).
[CrossRef]

J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989).
[CrossRef]

1988 (1)

1987 (1)

M. Jonasz, “Nonspherical sediment particles: comparison of size and volume distributions obtained with an optical and a resistive particle counter,” Mar. Geol. 78, 137–142(1987).
[CrossRef]

1981 (1)

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

1976 (1)

S. Taguchi, “Relationship between photosynthesis and cell size of marine diatom,” J. Phycol. 12, 185–189 (1976).
[CrossRef]

1974 (2)

O. B. Brown and H. R. Gordon, “Size-refractive index distribution of clear coastal water particulates from light scattering,” Appl. Opt. 13, 2874–2881 (1974).
[CrossRef]

J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

1973 (1)

J. H. Sharp, “Size classes of organic carbon in seawater,” Limnol. Oceanogr. 18, 441–447 (1973).
[CrossRef]

1972 (2)

R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
[CrossRef]

1955 (1)

J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955).
[CrossRef]

1947 (1)

B. Epstein, “The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution,” J. Franklin Inst. 244, 471–477 (1947).
[CrossRef]

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249 (1996).
[CrossRef]

Ackleson, S. G.

Agrawal, Y. C.

Y. C. Agrawal and O. A. Mikkelsen, “Empirical forward scattering phase functions from 0.08 to 16 deg. for randomly shaped terrigenous 1–21 μm sediment grains,” Opt. Express 17, 8805–8814 (2009).
[CrossRef]

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
[CrossRef]

Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000).
[CrossRef]

J. B. Riley, and Y. C. Agrawal, “Sampling and inversion of data in diffraction particle sizing,” Appl. Opt. 30, 4800–4817 (1991).
[CrossRef]

Ahn, J. H.

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in Southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007).
[CrossRef]

Anderson, T. R.

A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010).
[CrossRef]

Andreas, E. L.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Andrews, S.

S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010).
[CrossRef]

Anguelova, M. D.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Arellano, J. B.

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Aumont, O.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Azevedo, L.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

Babin, M.

Y. Huot and M. Babin, “Overview of fluorescence protocols: theory, basic concepts, and practice,” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, D. Suggett, M. A. Borowitzka, and O. Prasil, eds. (Springer, 2010), pp. 31–74.

Balch, W. M.

R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000).
[CrossRef]

Ball, D.

Barber, R. T.

P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998).
[CrossRef]

Barnard, A. H.

J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

Bautista, B.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Behrenfeld, M.

Berseneva, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Berthon, J.-F.

Bi, L.

Bird, D. F.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 530.

Bopp, L.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Boss, E.

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[CrossRef]

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

Boss, E. S.

Boyd, P. W.

P. W. Boyd and T. W. Trull, “Understanding the export of biogenic particles in oceanic waters: is there consensus?” Prog. Oceanogr. 72, 276–312 (2007).
[CrossRef]

Bricaud, A.

Brown, I.

Brown, O. B.

Brun-Cottan, J. C.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Buitenhuis, E. T.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Buonassissi, C. J.

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

Burchardt, L.

H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005).
[CrossRef]

Calzado, V. S.

Campbell, J. W.

J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237–13254 (1995).
[CrossRef]

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: analysis of clonal cultures,” Cytometry 10, 596–604 (1989).
[CrossRef]

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989).
[CrossRef]

J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989).
[CrossRef]

Casamitjana, X.

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Chami, M.

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Chang, G. C.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

Cheng, R. T.

J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
[CrossRef]

Chesselet, R.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Chin, J. H.

J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955).
[CrossRef]

Churilova, T. Y.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Ciotti, A. M.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

Claustre, H.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Cleveland, J. S.

J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
[CrossRef]

Colomer, J.

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Coston, S. D.

Cristina, X. P.

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Cucci, T. L.

J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989).
[CrossRef]

Cullen, J. J.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

Cunningham, A.

Czerski, H.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
[CrossRef]

Da Cunha, L. C.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Dall’Olmo, G.

Dam, H. G.

E. C. Monahan and H. G. Dam, “Bubbles: an estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106, 9377–9383 (2001).
[CrossRef]

de Leeuw, G.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Dickey, T. D.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

Dickie, P.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Dierssen, H. M.

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

Doucet, F. J.

F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005).
[CrossRef]

Doxaran, D.

Draine, B. T.

Epstein, B.

B. Epstein, “The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution,” J. Franklin Inst. 244, 471–477 (1947).
[CrossRef]

Fairall, C. W.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Falkowski, P. G.

P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998).
[CrossRef]

Flatau, P. J.

Fournier, G. R.

M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

Freeman, S.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Friedlander, S. K.

F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
[CrossRef]

Fujiki, T.

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

Fukuda, H.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

Fukuda, R.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

Gardner, W. D.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

Gartner, J. W.

J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
[CrossRef]

Geider, R.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

George, N.

Giraud, X.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Goldberg, E. D.

M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

Goodman, J. J.

Gordon, H. R.

Grant, S. B.

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in Southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007).
[CrossRef]

Hammond, R. R.

J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
[CrossRef]

Hansell, D. A.

D. A. Hansell, “DOC in the global ocean carbon cycle,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, eds. (Academic, 2002), pp. 685–715.

Harrison, S. P.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

He, M.-X.

Heath, A. L.

J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
[CrossRef]

Herring, S.

Hidy, G. M.

F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
[CrossRef]

Hoekstra, A. G.

M. A. Yurkin, and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).
[CrossRef]

Hu, L.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 530.

Huot, Y.

Y. Huot and M. Babin, “Overview of fluorescence protocols: theory, basic concepts, and practice,” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, D. Suggett, M. A. Borowitzka, and O. Prasil, eds. (Springer, 2010), pp. 31–74.

Jehanno, C.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Johnson, B. D.

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

Jonasz, M.

M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

M. Jonasz, “Nonspherical sediment particles: comparison of size and volume distributions obtained with an optical and a resistive particle counter,” Mar. Geol. 78, 137–142(1987).
[CrossRef]

Judice, J. J.

L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994).
[CrossRef]

Kahn, R.

Karp-Boss, L.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

Kattawar, G.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Kattawar, G. W.

Kepay, P.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Khomenko, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Kiefer, D. A.

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Klaas, C.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Knight, J. C.

Kohfeld, K. E.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Koike, I.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Korotaev, G.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Korotaev, G. K.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Krishnappan, B. G.

B. G. Krishnappan, “In situ size distribution of suspended particles in the Fraser River,” J. Hydraul. Eng. 126, 561–569 (2000).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

Lacouture, R.

H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005).
[CrossRef]

Lai, F. S.

F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
[CrossRef]

Lambert, C. E.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Lead, J. R.

F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005).
[CrossRef]

Lee, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Lee, M. E.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean Technol. 20, 563 (2003).
[CrossRef]

Lee, M. E. G.

J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Legendre, L.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Lewis, E. R.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Lewis, M.

Lewis, M. R.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean Technol. 20, 563 (2003).
[CrossRef]

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

Li, W. K. W.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Longhurst, A. R.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

Maguire, L.

F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005).
[CrossRef]

Manizza, M.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Marshall, H. G.

H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005).
[CrossRef]

Martynov, O. V.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

McKee, D.

Mikkelsen, O. A.

Y. C. Agrawal and O. A. Mikkelsen, “Empirical forward scattering phase functions from 0.08 to 16 deg. for randomly shaped terrigenous 1–21 μm sediment grains,” Opt. Express 17, 8805–8814 (2009).
[CrossRef]

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

Miyajima, T.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

Mobley, C. D.

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

Monahan, E. C.

E. C. Monahan and H. G. Dam, “Bubbles: an estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106, 9377–9383 (2001).
[CrossRef]

Morel, A.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

A. Morel, “The scattering of light by seawater: experimental results and theorectical approach,” in Optics of the Sea (Interface and In-water Transmission and Imaging), North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development, Electromagnetic Wave Propagation Panel, Vol. 61 of AGARD Lecture Series (National Aeronautics and Space Administration, 1973), p. 171.

Nagata, T.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

Nover, D.

S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010).
[CrossRef]

O’Dowd, C.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Ogawa, H.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

Pak, H.

J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

Partensky, F.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Pegau, W. S.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

Pich, J.

F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
[CrossRef]

Platt, T.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Popova, E. E.

A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010).
[CrossRef]

Portugal, L. F.

L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994).
[CrossRef]

Pottsmith, H. C.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000).
[CrossRef]

Prakash, A.

R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

Prentice, I. C.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Quéré, C. L.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Reynolds, R. A.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
[CrossRef]

Richter, K.

J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
[CrossRef]

Riley, J. B.

Risovic, D.

D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. Part 1 40, 1459–1473 (1993).
[CrossRef]

Rivkin, R. B.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Roach, D. M.

J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

Robertson, G. N.

Rodriguez, J.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Ruiz, J.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Sathyendranath, S.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Schladow, S. G.

S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010).
[CrossRef]

Schoonmaker, J. S.

J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
[CrossRef]

Schulz, M.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Schwartz, S. E.

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Serra, T.

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Sharp, J. H.

J. H. Sharp, “Size classes of organic carbon in seawater,” Limnol. Oceanogr. 18, 441–447 (1973).
[CrossRef]

Sheldon, R. W.

R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

Shifrin, K. S.

K. S. Shifrin, Physical Optics of Ocean Water, AIP Translation Series (Springer, 1988).

Shybanov, E.

J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Shybanov, E. B.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

Silverberg, N.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Slade, W. H.

Sliepcevich, C. M.

J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955).
[CrossRef]

Smetacek, V.

P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998).
[CrossRef]

Spinrad, R. W.

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
[CrossRef]

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Sullivan, J.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Sullivan, J. M.

Sutcliffe, W. H.

R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

Taguchi, S.

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

S. Taguchi, “Relationship between photosynthesis and cell size of marine diatom,” J. Phycol. 12, 185–189 (1976).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

Traykovski, P.

Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001).
[CrossRef]

Tribus, M.

J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955).
[CrossRef]

Trull, T. W.

P. W. Boyd and T. W. Trull, “Understanding the export of biogenic particles in oceanic waters: is there consensus?” Prog. Oceanogr. 72, 276–312 (2007).
[CrossRef]

Twardowski, M.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50, 1240–1259 (2011).
[CrossRef]

H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Twardowski, M. S.

X. Zhang, L. Hu, M. S. Twardowski, and J. M. Sullivan, “Scattering by solutions of major sea salts,” Opt. Express 17, 19580–19585 (2009).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

Twomey, S.

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier Scientific, 1977), p. 243.

Uitz, J.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Vagle, S.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
[CrossRef]

Vaillancourt, R. D.

R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Vicente, L. N.

L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994).
[CrossRef]

Vila, X.

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
[CrossRef]

Wallace, D. W. R.

D. W. R. Wallace and C. D. Wirick, “Large air-sea gas fluxes associated with breaking waves,” Nature 356, 694–696 (1992).
[CrossRef]

Wang, P.-F.

J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
[CrossRef]

Watson, A. J.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Wells, M.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Wells, M. L.

M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

Whitmire, A.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
[CrossRef]

Wirick, C. D.

D. W. R. Wallace and C. D. Wirick, “Large air-sea gas fluxes associated with breaking waves,” Nature 356, 694–696 (1992).
[CrossRef]

Wolf-Gladrow, D.

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
[CrossRef]

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
[CrossRef]

Yamasaki, A.

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

Yang, P.

Yentsch, C. M.

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989).
[CrossRef]

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: analysis of clonal cultures,” Cytometry 10, 596–604 (1989).
[CrossRef]

J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989).
[CrossRef]

Yool, A.

A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010).
[CrossRef]

You, Y.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Yurkin, M. A.

M. A. Yurkin, and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).
[CrossRef]

Zaneveld, J. R. V.

J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

Zhang, X.

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50, 1240–1259 (2011).
[CrossRef]

H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
[CrossRef]

X. Zhang, L. Hu, M. S. Twardowski, and J. M. Sullivan, “Scattering by solutions of major sea salts,” Opt. Express 17, 19580–19585 (2009).
[CrossRef]

X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17, 12685–12691 (2009).
[CrossRef]

X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009).
[CrossRef]

X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17, 1671–1678 (2009).
[CrossRef]

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

Zibordi, G.

Appl. Opt. (13)

O. B. Brown and H. R. Gordon, “Size-refractive index distribution of clear coastal water particulates from light scattering,” Appl. Opt. 13, 2874–2881 (1974).
[CrossRef]

S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988).
[CrossRef]

S. D. Coston and N. George, “Particle sizing by inversion of the optical transform pattern,” Appl. Opt. 30, 4785–4794 (1991).
[CrossRef]

J. C. Knight, D. Ball, and G. N. Robertson, “Analytical inversion for laser diffraction spectrometry giving improved resolution and accuracy in size distribution,” Appl. Opt. 30, 4795–4799 (1991).
[CrossRef]

J. B. Riley, and Y. C. Agrawal, “Sampling and inversion of data in diffraction particle sizing,” Appl. Opt. 30, 4800–4817 (1991).
[CrossRef]

X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
[CrossRef]

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra,” Appl. Opt. 49, 334–342 (2010).
[CrossRef]

X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50, 1240–1259 (2011).
[CrossRef]

Cytometry (3)

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: analysis of clonal cultures,” Cytometry 10, 596–604 (1989).
[CrossRef]

J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989).
[CrossRef]

J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989).
[CrossRef]

Deep-Sea Res. A (1)

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992).
[CrossRef]

Deep-Sea Res. Part 1 (1)

D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. Part 1 40, 1459–1473 (1993).
[CrossRef]

Environ. Sci. Technol. (1)

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in Southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007).
[CrossRef]

Geosci. Model Dev. Discuss. (1)

A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010).
[CrossRef]

Glob. Chang. Biol. (1)

C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005).
[CrossRef]

J. Atmos. Ocean Technol. (1)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean Technol. 20, 563 (2003).
[CrossRef]

J. Colloid Interface Sci. (1)

F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972).
[CrossRef]

J. Environ. Eng. (1)

T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001).
[CrossRef]

J. Franklin Inst. (1)

B. Epstein, “The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution,” J. Franklin Inst. 244, 471–477 (1947).
[CrossRef]

J. Geophys. Res. (13)

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001).
[CrossRef]

J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001).
[CrossRef]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010).
[CrossRef]

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010).
[CrossRef]

M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[CrossRef]

E. C. Monahan and H. G. Dam, “Bubbles: an estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106, 9377–9383 (2001).
[CrossRef]

J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237–13254 (1995).
[CrossRef]

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005).
[CrossRef]

J. Hydraul. Eng. (1)

B. G. Krishnappan, “In situ size distribution of suspended particles in the Fraser River,” J. Hydraul. Eng. 126, 561–569 (2000).
[CrossRef]

J. Mar. Res. (1)

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

J. Phycol. (1)

S. Taguchi, “Relationship between photosynthesis and cell size of marine diatom,” J. Phycol. 12, 185–189 (1976).
[CrossRef]

J. Phys. Chem. (1)

J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955).
[CrossRef]

J. Plankton Res. (3)

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002).
[CrossRef]

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249 (1996).
[CrossRef]

H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. A. Yurkin, and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).
[CrossRef]

Limnol. Oceanogr. (9)

X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998).
[CrossRef]

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000).
[CrossRef]

M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

J. H. Sharp, “Size classes of organic carbon in seawater,” Limnol. Oceanogr. 18, 441–447 (1973).
[CrossRef]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002).
[CrossRef]

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

Limnol. Oceanogr. Methods (2)

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010).
[CrossRef]

Mar. Chem. (1)

M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

Mar. Geol. (2)

M. Jonasz, “Nonspherical sediment particles: comparison of size and volume distributions obtained with an optical and a resistive particle counter,” Mar. Geol. 78, 137–142(1987).
[CrossRef]

J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001).
[CrossRef]

Marine Geol. (1)

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000).
[CrossRef]

Math. Comput. (1)

L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994).
[CrossRef]

Nature (1)

D. W. R. Wallace and C. D. Wirick, “Large air-sea gas fluxes associated with breaking waves,” Nature 356, 694–696 (1992).
[CrossRef]

Opt. Express (8)

Opt. Lett. (1)

Proc. SPIE (1)

J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994).
[CrossRef]

Prog. Oceanogr. (3)

P. W. Boyd and T. W. Trull, “Understanding the export of biogenic particles in oceanic waters: is there consensus?” Prog. Oceanogr. 72, 276–312 (2007).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004).
[CrossRef]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Rev. Geophys. (1)

G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011).
[CrossRef]

Science (1)

P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998).
[CrossRef]

Talanta (1)

F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005).
[CrossRef]

Other (10)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 530.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).

Duke Scientific Corporation, “Index of Refraction,” Technical Note 007B (1996).

D. A. Hansell, “DOC in the global ocean carbon cycle,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, eds. (Academic, 2002), pp. 685–715.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

K. S. Shifrin, Physical Optics of Ocean Water, AIP Translation Series (Springer, 1988).

A. Morel, “The scattering of light by seawater: experimental results and theorectical approach,” in Optics of the Sea (Interface and In-water Transmission and Imaging), North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development, Electromagnetic Wave Propagation Panel, Vol. 61 of AGARD Lecture Series (National Aeronautics and Space Administration, 1973), p. 171.

S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier Scientific, 1977), p. 243.

Y. Huot and M. Babin, “Overview of fluorescence protocols: theory, basic concepts, and practice,” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, D. Suggett, M. A. Borowitzka, and O. Prasil, eds. (Springer, 2010), pp. 31–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A particle of irregular shape and of refractive index n is illuminated by a beam of wavelength λ. The total light received at angle θ is the superposition of light fields scattered by individual dipoles, of which an arbitrary two with a separation of d and a direction of α are shown. The phase difference between these two fields is Δφ(θ,α)=2πndλ(cosαcos(αθ))=4πndλsin(θ2)sin(αθ2). Accounting for all the dipoles, the mean phase difference is Δφ(θ)=4πnλsin(θ2)d¯, where d¯ represents dsin(αθ2) averaged over the entire volume of the particle [16].

Fig. 2.
Fig. 2.

Sampling stations during the experiments in (a) Mobile Bay, (b) Chesapeake Bay, and (c) Monterey Bay. Additional analyses are reported for station CB3, which is highlighted in the red circle in (b).

Fig. 3.
Fig. 3.

(a) Example of the ambient light contamination in the LISST VSF measurement. The VSFs from Chesapeake Bay are plotted at four depths. The ambient light appears as an increase in the VSF at the two largest angles of the LISST, and it decreases with increasing depth. (b) Combined MVSM and LISST VSF at a depth of 1.5 m. The largest two LISST angles are excluded from the combined VSF.

Fig. 4.
Fig. 4.

Combined MVSM and LISST VSFs for polystyrene spheres with radii of (a) 2 μm and (b) 20 μm compared with Mie theory using size distribution data from the manufacturer. The solid vertical line at 15° demarcates the change in the ordinate scale from logarithmic to linear.

Fig. 5.
Fig. 5.

The empirical power law relationship was estimated for the [Chl] concentration per cell as a function of cell size based on laboratory measurements of phytoplankton species in Stramski et al. [72] (SBM01), Taguchi [74] (T76), and Fujiki and Taguchi [75] (FT02). This data set, while not exhaustive, includes 34 species and strains cultured under 42 growth irradiance conditions and thus covers a broad range of phytoplankton sizes. The inset shows the distribution of the refractive index of the phytoplankton species from SBM01 (not reported for the other two studies).

Fig. 6.
Fig. 6.

Comparison of the PSD derived from the full VSF inversion and the LISST inversion. An example was chosen from each experiment in (a) Monterey Bay, (b) Chesapeake Bay, and (c) Mobile Bay. The upper and lower boundaries denote the range of optically equivalent particles. Relative differences in the PSD between the VSF inversion and LISST for each data set are shown in (d). The vertical bars indicate the upper and lower boundaries estimated for optically equivalent subpopulations. The curves are shifted slightly in the x direction to avoid overlap of the error bars.

Fig. 7.
Fig. 7.

Comparison of Junge slopes estimated from the VSF inversion and the LISST for sizes from 3 to 100 μm. The vertical bars indicate the upper and lower boundaries estimated for optically equivalent subpopulations.

Fig. 8.
Fig. 8.

(a)–(e) Inversion results using the VSFs at 532 nm measured at station CB3 on 13 October and 19 to 22 October 2009, respectively. The two values in the upper left are the total scattering (m1) and backscattering (m1) coefficients, respectively, which were estimated from the VSF at 532 nm, and the three values in the legend are the refractive index for the identified subpopulation and its fractional contribution (in percentage) to the total scattering and backscattering, respectively. The solid and dashed black curves (almost overlapping with each other) are the measured and the inversion-reconstructed VSFs, respectively. (f) Comparison of the backscattering coefficient spectra for the same dates. The solid curves are measured backscattering coefficients and the dotted curves are calculated values from the PSDs derived from the inversion. The values after the date in the legend are the backscattering spectral slopes s estimated from the inverted spectra as bb(λ)=bb(532)(λ532)s.

Fig. 9.
Fig. 9.

(a)–(e) PSDs of the particle subpopulations (grouped by the refractive index) derived from the VSF inversion at station CB3 on 13 October and 19 to 22 October 2009, respectively. The dashed curves are the sum of PSDs from all the subpopulations. (f) Temporal change of the scattering coefficients by different particle subpopulations. The numerical values in the legends are the refractive indices. “VSP” stands for very small particles for which the refractive index cannot be retrieved.

Fig. 10.
Fig. 10.

Measured chlorophyll concentration based on the fluorescence method and estimated (±standard deviation) using Eq. (8) for the subpopulations with n=1.04, 1.06, and/or 1.1. The curves are shifted slightly in the x direction to avoid overlap of the error bars.

Tables (1)

Tables Icon

Table 1. Comparison of the Inversion Schemes and the Particle Information That Can Be Potentially Retrieved from the LISST-100X and MVSM Instruments

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δφ(θ)sinθ2.
β(θ,λ)=i=1Mbi(n(r),F(r),S(r),T(r),λ)β¯i(n(r),F(r),S(r),T(r),θ,λ),
Ni=biCsca,i,
FLISST=Ni,forirepresenting one of 32 size bins.
FVSF-inversion=i=1MNiFi(rMo,i,σi)forirepresenting each subpopulation.
βi(θ,λ)=rminrmaxNiFi(rMo,i,σi)Cang(θ,ni,r,λ)dr,
β(θ,λ)=i=1Mβi(θ,λ).
[Chl]=Ni×(0.030±0.006)×rmean_i2.876±0.115,

Metrics