Abstract

Avoiding laser frequency drifts is a key issue in many atomic physics experiments. Several techniques have been developed to lock the laser frequency using sub-Doppler dispersive atomic lineshapes as error signals in a feedback loop. We propose here a two-beam technique that uses nonlinear properties of an atomic vapor around sharp resonances to produce sub-Doppler dispersivelike lineshapes that can be used as error signals. Our simple and robust technique has the advantage of not needing either modulation or magnetic fields.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Banerjee, D. Das, U. Rapol, and N. Natarajan, “Frequency locking of tunable diode lasers to a rubidium-stabilized ring-cavity resonator,” Appl. Opt. 43, 2528–2531 (2004).
    [CrossRef]
  2. G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
    [CrossRef]
  3. S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two photon Zeeman lock,” Appl. Opt. 39, 4970–4974 (2000).
    [CrossRef]
  4. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645–6649 (2003).
    [CrossRef]
  5. Fast external phase modulation, as, for example, using electro-optic modulators, can solve the problem of limited feedback bandwidth, but with the drawback of losing simplicity and making the experiment more expensive.
  6. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
    [CrossRef]
  7. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
    [CrossRef]
  8. F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.
  9. J. E. Bjorkholm and A. Ashkin, “Cw self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32, 129–132 (1974).
    [CrossRef]
  10. T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
    [CrossRef]
  11. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  12. J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef]
  13. As the technique described is induced by nonlinear effects, thus requiring strong fields, the sub-Doppler signal might be power-broadened. The technique resolution is thus larger than the natural (or pressure-broadened) width.
  14. P. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989).
    [CrossRef]

2008 (1)

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

2004 (1)

2003 (2)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645–6649 (2003).
[CrossRef]

2000 (1)

1998 (1)

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

1995 (1)

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

1994 (1)

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

1989 (1)

1974 (1)

J. E. Bjorkholm and A. Ashkin, “Cw self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32, 129–132 (1974).
[CrossRef]

Ackemann, T.

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Ashkin, A.

J. E. Bjorkholm and A. Ashkin, “Cw self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32, 129–132 (1974).
[CrossRef]

Baluschev, S.

Banerjee, A.

Bjorkholm, J. E.

J. E. Bjorkholm and A. Ashkin, “Cw self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32, 129–132 (1974).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Carasso, D.

Chevrollier, M.

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Clairon, A.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Cornish, S. L.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Das, D.

Davidson, N.

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

Friedman, N.

Gea-Banacloche, J.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Harris, M. L.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Hoffer, L. M.

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Hughes, I. G.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Jin, S.-z.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Johns, B.

Khaykovich, L.

Kuga, T.

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

Lett, P.

Li, Y.-q.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Lippi, G. L.

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Mestre, V.

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Mukae, T.

Nalik, J.

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Natarajan, N.

Oriá, M.

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Passerat de Silans, T.

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

Phillips, W. D.

Queiroga, F.

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Rapol, U.

Rolston, S. L.

Rovera, G. D.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Santarelli, G.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Scholz, T.

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Soares, W. Martins

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

Tanner, C. E.

Tino, G. M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

Torii, Y.

Tripathi, A.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Umeki, T.

Vidal, I.

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Vorgerd, C.

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Watts, R. N.

Westbrook, C. I.

Xiao, M.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Yoshikawa, Y.

Appl. Opt. (3)

Appl. Phys. B: Laser and Optics (1)

F. Queiroga, W. Martins Soares, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B: Laser and Optics, doi: 10.1007/s00340-012-4981-1.

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Opt. Commun. (1)

T. Ackemann, T. Scholz, C. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, “Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping,” Opt. Commun. 147, 411–428 (1998).
[CrossRef]

Phys. Rev. A (1)

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

J. E. Bjorkholm and A. Ashkin, “Cw self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32, 129–132 (1974).
[CrossRef]

Rev. Sci. Instrum. (1)

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[CrossRef]

Other (3)

Fast external phase modulation, as, for example, using electro-optic modulators, can solve the problem of limited feedback bandwidth, but with the drawback of losing simplicity and making the experiment more expensive.

As the technique described is induced by nonlinear effects, thus requiring strong fields, the sub-Doppler signal might be power-broadened. The technique resolution is thus larger than the natural (or pressure-broadened) width.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of the effect of positive (a) and negative (b) increment in the nonlinear refractive index. Positive increment (a) results in self-focusing of a Gaussian beam, while negative increment (b) induces self-defocusing.

Fig. 2.
Fig. 2.

Imaginary (a) and real (b) parts of χ(3) for a closed two-level system as a function of frequency detuning (δ) normalized by natural linewidth (Γ). The lineshapes were calculated by numerical integration over a Maxwell–Boltzmann velocity distribution corresponding to a temperature of 70 °C and with pump intensity 0.02IS and probe intensity 0.1IS (IS is the saturation intensity).

Fig. 3.
Fig. 3.

Experimental setup to produce sub-Doppler dispersive lineshapes. For the sake of clarity, the optical isolator and the auxiliary saturated absorption experiment are not shown. M, mirrors; BS, beamsplitters; L, focusing lens; A, aperture; PD, photodetector.

Fig. 4.
Fig. 4.

Transmission of the probe beam through the aperture without (a) and with (b) the counterpropagating pump beam when the frequency is scanned around the Rb855S1/2(F=2)5P3/2(F=1,2,3) (unresolved) transitions. The probe and pump powers used are both 0.3 mW, and the temperature of the Rb reservoir is T=70°C (atomic density of 2×1012at/cm3). The zero line corresponds to the off-resonance transmission.

Fig. 5.
Fig. 5.

Transmission of the probe beam through the aperture when the laser frequency is scanned around the Rb875S1/2(F=1)5P3/2(F=0,1,2) transitions, for different probe beam powers and for a Rb vapor at T=70°C (atomic density 2×1012at/cm3): for a probe power of (a) 20 μW, (b) 60 μW, and (c) 300 μW; (d) homodyne detection of an amplitude-modulated saturated absorption reference signal. The zero line in (a), (b), and (c) corresponds to the off-resonance transmission.

Fig. 6.
Fig. 6.

(a) Error signal as a function of frequency detuning relative to Rb875S1/2(F=1)5P3/2(F=2) hyperfine transition; (b) saturated absorption from a reference cell; (c) saturated absorption signal for the laser locked to the Rb875S1/2(F=1)5P3/2(F=2) hyperfine transition as well as for an unlocked laser. The locking frequency is indicated by arrows in (a) and (b). (c) shows locking times up to 100 s to compare with the unlocked laser but locking times of more than 1 h were reached with similar performance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n=n0+n2I,
I(r)=I0eαr2,
n(r)=n0+n2I0eαr2,
n2=34n02ϵ0c(χ(3)),
P=N(μegρge+μgeρeg)=ϵ0(χ(1)+3χ(3)|EP|2)EP,

Metrics