Abstract

The influence of paramagnetic magnetization of magneto-optical elements on the characteristics of Faraday isolators is studied. The theoretical estimates confirmed by the experiment indicate that this effect should be taken into consideration, particularly when designing large-aperture and cryogenic Faraday isolators.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Aplet and J. W. Carson, “A Faraday effect optical isolator,” Appl. Opt. 3, 544–545 (1964).
    [CrossRef]
  2. W. W. Simmons and G. W. Leppelmier, “Optical beam shaping devices using polarization effects,” Appl. Opt. 13, 1629–1632 (1974).
    [CrossRef]
  3. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  4. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
    [CrossRef]
  5. U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).
  6. T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).
  7. S. Matsumoto and S. Suzuki, “Temperature-stable Faraday rotator material and its use in high-performance optical isolators,” Appl. Opt. 25, 1940–1945 (1986).
    [CrossRef]
  8. I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
    [CrossRef]
  9. E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron. 41, 71–74 (2011).
    [CrossRef]
  10. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
    [CrossRef]
  11. D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
    [CrossRef]
  12. A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
    [CrossRef]
  13. O. V. Palashov, A. V. Voitovich, I. B. Mukhin, and E. A. Khazanov, “Faraday isolator with 2.5 tesla magnet field for high power lasers,” in CLEO/EUROPE-EQEC 2009 (IEEE, 2009), p. CA1_6.

2011 (1)

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron. 41, 71–74 (2011).
[CrossRef]

2010 (1)

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

2009 (1)

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

2007 (1)

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

2006 (1)

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

2004 (1)

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

1999 (1)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

1992 (1)

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

1986 (1)

1982 (1)

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

1974 (1)

1964 (1)

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Aplet, L. J.

Carson, J. W.

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Katin, E. V.

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

Khazanov, E. A.

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

O. V. Palashov, A. V. Voitovich, I. B. Mukhin, and E. A. Khazanov, “Faraday isolator with 2.5 tesla magnet field for high power lasers,” in CLEO/EUROPE-EQEC 2009 (IEEE, 2009), p. CA1_6.

Krinchik, G. S.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Kruglyashov, S. B.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Leppelmier, G. W.

Levitin, R. Z.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Mal’shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Matsumoto, S.

Mironov, E. A.

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron. 41, 71–74 (2011).
[CrossRef]

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Mukhin, I. B.

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

O. V. Palashov, A. V. Voitovich, I. B. Mukhin, and E. A. Khazanov, “Faraday isolator with 2.5 tesla magnet field for high power lasers,” in CLEO/EUROPE-EQEC 2009 (IEEE, 2009), p. CA1_6.

Mukimov, K. M.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Orlov, V. N.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Palashov, O. V.

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron. 41, 71–74 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

O. V. Palashov, A. V. Voitovich, I. B. Mukhin, and E. A. Khazanov, “Faraday isolator with 2.5 tesla magnet field for high power lasers,” in CLEO/EUROPE-EQEC 2009 (IEEE, 2009), p. CA1_6.

Petrovsky, G. T.

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Simmons, W. W.

Sokolov, B. Yu.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Suzuki, S.

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Valiev, U. V.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Voitovich, A. V.

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron. 41, 71–74 (2011).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

O. V. Palashov, A. V. Voitovich, I. B. Mukhin, and E. A. Khazanov, “Faraday isolator with 2.5 tesla magnet field for high power lasers,” in CLEO/EUROPE-EQEC 2009 (IEEE, 2009), p. CA1_6.

Voytovich, A. V.

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

Zarubina, T. V.

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

Zelenogorsky, V. V.

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Zheleznov, D. S.

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510(2004).
[CrossRef]

Opt. Commun. (1)

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

Opticheskii Zhurnal (1)

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

Quantum Electron. (5)

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron. 41, 71–74 (2011).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorsky, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

Solid State Phys. (1)

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Yu. Sokolov, “The nature of the Faraday effect in paramagnetic rare-earth garnet Tb3Ga5O12,” Solid State Phys. 24, 9 (1982).

Other (1)

O. V. Palashov, A. V. Voitovich, I. B. Mukhin, and E. A. Khazanov, “Faraday isolator with 2.5 tesla magnet field for high power lasers,” in CLEO/EUROPE-EQEC 2009 (IEEE, 2009), p. CA1_6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Distribution of the magnetic field strength caused by uniform magnetization of a cylinder.

Fig. 2.
Fig. 2.

Relative difference in rotation angles of the polarization plane in MOE when the magnetization is considered and not considered.

Fig. 3.
Fig. 3.

Nonuniformity of the rotation angle caused by magnetization of MOE (TGG) versus ratio of crystal length to its diameter at room and cryogenic temperatures.

Fig. 4.
Fig. 4.

Simplified schematic of experimental layout: 1, laser; 2, polarizer; 3, magneto-optic element placed in a magnetic field; 4, analyzer; 5, CCD camera.

Fig. 5.
Fig. 5.

Distribution of the axial component of the magnetic field strength in the MS used in the experiment, and crystal arrangement in the MS.

Fig. 6.
Fig. 6.

Simplified schematic diagram of experiment: 1, laser; 2, polarizer; 3, magneto-optic element placed in a magnetic field; 4, analyzer; 5, CCD camera.

Fig. 7.
Fig. 7.

Distribution of the magnetic field strength along the MS axis and along a straight line 5 mm from the axis, and crystal arrangement in the MS.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

I[dB]=10lg1γ
γ=PdP0,
M⃗=χH⃗0
H⃗(r,z)=H⃗0+H⃗1(r,z),
B⃗(r,z)=μH⃗0+H⃗1(r,z),
φ=VL/2L/2Bz(z)dz.
δφ=φφ˜φ˜,
φ˜=VH0L,
φ=VL/2L/2Bz(r,z)dz=VμH0L+VL/2L/2H1z(r,z)dz;
δφ=(μ1)H0L+L/2L/2H1z(r,z)dzH0L.
H1z(0,z)=4πχH0+2πχH0(zL/2(zL/2)2+R2z+L/2(z+L/2)2+R2);
L/2L/2H1z(0,z)dz=4πχH0L+4πχH0(LL2+R2+R)=4πχH0L+4πχH0L(11+R2L2+RL).
δφ=4πχ(1+R2L2RL),
δφ=φsideφaxisφaxis=VL/2L/2Bz(D/2,z)dzVL/2L/2Bz(0,z)dzVL/2L/2Bz(0,z)dz.
δφ=L/2L/2H1z(D/2,z)dzL/2L/2H1z(0,z)dzμH0L+L/2L/2H1z(0,z)dz.
δφ=F(0)F(D/2)L(1χ+4π)F(0),
F(x)=L/2L/202π0D/2(z+L/2)ρdρdφdz(x2+ρ2+(z+L/2)22xρcosφ)32L/2L/202π0D/2(zL/2)ρdρdφdz(x2+ρ2+(zL/2)22xρcosφ)32.
δφ=φrodφdiscφrod.
δφtheory=δφL+δφM,
δφM=δφrodδφdisk=0.52×4πχ=0.65%.
δφtheory=1.75%±0.2%.
δφexp=1.87%±0.44%.
Δφ=(δφrodδφdisc)φ0.
Δφ=0.32×4πχφ0.
χ=χTGG(T=85K)=6×103;V=VTGG(T=85K,λ=1.06μm)=7.8degkOe·cm;φ0=VL/2L/2Hzdz;L/2L/2Hzdz=13.9kOe·cm
φrod(T1)=V(T1)L/2L/2Bzrod(z)dz,
φdisc(T2)=V(T2)L/2L/2Bzdisc(z)dz,
Δφ=φrod(T1)φdisk(T1)=V(T1)L/2L/2Bzrod(z)dzV(T1)L/2L/2Bzdisk(z)dz.
φdisk(T1)=V(T1)L/2L/2Bzdisk(z)dz=V(T1)V(T2)V(T2)L/2L/2Bzdisk(z)dz=V(T1)V(T2)φdisk(T2)
φdisc(T1)=T2T1φdisc(T2).
δφMS=1.5%.
δφtheory290K=2.1%;δφtheory95K=3.4%;δφtheory82K=3.7%.
δφexp82K=2.9%±0.2%;δφexp290K=1.9%±0.3%;δφexp95K=2.6%±0.2%.

Metrics