Abstract

A method to visualize and quantify fluorescence resonance energy transfer (FRET) in scattering media is proposed. It combines the ratiometric FRET method with fluorescence molecular tomography (FMT) in continuous wave (CW) mode. To evaluate the performance of the proposed method, experiments on a tissue-mimicking phantom are carried out. The results demonstrate that the proposed approach is capable of visualizing and quantifying the FRET distribution in scattering media, which implies the further application of the ratiometric assay in in vivo studies.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
    [CrossRef]
  2. K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
    [CrossRef]
  3. M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
    [CrossRef]
  4. J. Yuan, L. Peng, B. E. Bouma, and G. J. Tearney, “Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer,” Opt. Express 18, 18839–18851(2010).
    [CrossRef]
  5. D. W. Piston and G. J. Kremers, “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem. Sci. 32, 407–414 (2007).
    [CrossRef]
  6. R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
    [CrossRef]
  7. C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
    [CrossRef]
  8. A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
    [CrossRef]
  9. M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
    [CrossRef]
  10. X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
    [CrossRef]
  11. M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
    [CrossRef]
  12. P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
    [CrossRef]
  13. Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
    [CrossRef]
  14. T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
    [CrossRef]
  15. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
    [CrossRef]
  16. J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
    [CrossRef]
  17. M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
    [CrossRef]
  18. X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314 (2010).
    [CrossRef]
  19. X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
    [CrossRef]
  20. X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
    [CrossRef]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef]
  22. D. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
    [CrossRef]
  23. A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).
  24. Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.
  25. F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
    [CrossRef]
  26. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef]
  27. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [CrossRef]
  28. R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13, 2337–2344 (2005).
    [CrossRef]

2011

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
[CrossRef]

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[CrossRef]

2010

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314 (2010).
[CrossRef]

V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett. 35, 1314–1316 (2010).
[CrossRef]

J. Yuan, L. Peng, B. E. Bouma, and G. J. Tearney, “Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer,” Opt. Express 18, 18839–18851(2010).
[CrossRef]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
[CrossRef]

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
[CrossRef]

2009

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
[CrossRef]

D. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
[CrossRef]

2008

2007

D. W. Piston and G. J. Kremers, “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem. Sci. 32, 407–414 (2007).
[CrossRef]

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

2006

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

2005

2003

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
[CrossRef]

2002

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

2001

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[CrossRef]

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef]

1992

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

1948

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
[CrossRef]

Alseikhan, B. A.

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[CrossRef]

Arridge, S. R.

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express 2, 1907–1917 (2011).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef]

Bai, J.

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
[CrossRef]

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314 (2010).
[CrossRef]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
[CrossRef]

D. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
[CrossRef]

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Banning, C.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Barroso, M.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Bouma, B. E.

Chen, Y.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Cicchi, R.

Currall, B.

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Day, R. N.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef]

Elangovan, M.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Erickson, M. G.

M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
[CrossRef]

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[CrossRef]

Felekyan, S.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
[CrossRef]

Foschum, F.

French, P. M. W.

Fuchs, P. A.

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

Gaind, V.

Gansen, A.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Grant, L.

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

Guo, X.

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

Hajnal, J. V.

Hallworth, R.

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Hauber, J.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Hauger, F.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Heinze, K. G.

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

Hiel, H.

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef]

Hoffmann, D.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Hsu, Y. Y.

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

Hu, G.

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

Ikura, M.

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Kak, A.

A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).

Kalinin, S.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Kao, F. J.

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

Kienle, A.

Kirchhoff, F.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Kohl, T.

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

Koltermann, A.

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

Koppensteiner, H.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Kremers, G. J.

D. W. Piston and G. J. Kremers, “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem. Sci. 32, 407–414 (2007).
[CrossRef]

Kuhlemann, R.

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

Kularatne, S.

Kung, S. H.

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

Laine, R.

Langowskia, J.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Liang, H.

M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
[CrossRef]

Liu, F.

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
[CrossRef]

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
[CrossRef]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314 (2010).
[CrossRef]

Liu, Q.

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Liu, X.

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
[CrossRef]

X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
[CrossRef]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314 (2010).
[CrossRef]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
[CrossRef]

D. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Express 17, 21376–21395 (2009).
[CrossRef]

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Liu, Y. N.

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

Low, P. S.

Massi, D.

McGinty, J.

Michael, G.

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Michels, R.

Mori, M. X.

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
[CrossRef]

Nichols, M. G.

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Park, S. A.

M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
[CrossRef]

Pavone, F.

Peng, L.

Periasamy, A.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Peterson, B. Z.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[CrossRef]

Piston, D. W.

D. W. Piston and G. J. Kremers, “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem. Sci. 32, 407–414 (2007).
[CrossRef]

Reimer, R.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Sampson, D.

Sardini, A.

Schindler, M.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Schubert, U.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef]

Schwille, P.

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

Seidelb, C. A. M.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Slaney, M.

A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).

Soloviev, V. Y.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Stuckey, D. W.

Tadross, M. R.

M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
[CrossRef]

Tearney, G. J.

Tótha, K.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

Truong, K.

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

Valeri, A.

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Veeramani, B.

M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
[CrossRef]

Votteler, J.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Wallrabe, H.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Wang, D.

Wang, W.

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

Warmer, M.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Webb, K. J.

Wells, D. J.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Wu, X.

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Wylezinska-Arridge, M.

Xie, X.

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Xu, Y.

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Yang, P. S.

X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
[CrossRef]

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

Yang, W.

X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
[CrossRef]

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

Yuan, J.

Yue, D. T.

X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
[CrossRef]

M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
[CrossRef]

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
[CrossRef]

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[CrossRef]

Zhang, B.

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
[CrossRef]

Zhang, H.

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

Zhang, Y.

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
[CrossRef]

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Zuo, J.

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Ann. Biomed. Eng.

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).
[CrossRef]

Ann. Phys.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
[CrossRef]

Biochem. Biophys. Res. Commun.

Y. Y. Hsu, Y. N. Liu, W. Wang, F. J. Kao, and S. H. Kung, “In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair,” Biochem. Biophys. Res. Commun. 353, 939–945(2007).
[CrossRef]

Biomed. Opt. Express

Brain Research

R. Hallworth, B. Currall, G. Michael, M. G. Nichols, X. Wu, and J. Zuo, “Studying inner ear protein–protein interactions using FRET and FLIM,” Brain Research 1091, 122–131 (2006).
[CrossRef]

Curr. Opin. Struct. Biol.

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng.

X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143 (2011).
[CrossRef]

IEEE Trans. Med. Imaging

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604 (2011).
[CrossRef]

J. Microsc.

M. R. Tadross, S. A. Park, B. Veeramani, and D. T. Yue, “Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy,” J. Microsc. 233, 192–204 (2009).
[CrossRef]

J. Neurosci.

P. S. Yang, B. A. Alseikhan, H. Hiel, L. Grant, M. X. Mori, W. Yang, P. A. Fuchs, and D. T. Yue, “Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells,” J. Neurosci. 26, 10677–10689 (2006).
[CrossRef]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef]

Methods

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer,” Methods 29, 58–73 (2003).
[CrossRef]

Nature

X. Liu, P. S. Yang, W. Yang, and D. T. Yue, “Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin,” Nature 463, 968–972 (2010).
[CrossRef]

Neuron

M. G. Erickson, H. Liang, M. X. Mori, and D. T. Yue, “FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation,” Neuron 39, 97–107 (2003).
[CrossRef]

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

PLoS One

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein–protein interactions in living cells,” PLoS One 5, e9344 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. USA

A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Tótha, J. Langowskia, and C. A. M. Seidelb, “Nucleosome disassembly intermediates characterized by single-molecule FRET,” Proc. Natl. Acad. Sci. USA 106, 15308–15313 (2009).
[CrossRef]

T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann, and P. Schwille, “A protease assay for two-photon cross-correlation and FRET analysis based solely on fluorescent proteins,” Proc. Natl. Acad. Sci. USA 99, 12161–12166 (2002).
[CrossRef]

Trends Biochem. Sci.

D. W. Piston and G. J. Kremers, “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem. Sci. 32, 407–414 (2007).
[CrossRef]

Other

A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).

Q. Liu, Y. Zhang, X. Xie, Y. Xu, Y. Zhang, X. Liu, J. Bai, and X. Liu, “Characterization of quantitative FRET sensors for fluorescent molecular tomography,” presented at the Biophysics Society Annual Meeting, Baltimore, Maryland, March2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the principle of the three-cube method. (a) Fluorescence emission spectrum with the excitation light at 440 nm. Emission at 530 nm (dimer curve) is the sum of CFP emission (CFP curve) and YFP emission (YFP total curve). A portion of its YFP emission is due to FRET, and the rest is due to direct excitation. Similarly, for the mixture, the emission at 530 nm is the sum of CFP emission (CFP curve) and YFP emission (YFP direct curve). Its YFP emission (YFP direct curve) is due only to direct excitation. The spectra are adapted from [9]; (b) comparison between the two used samples. The length of the arrow represents the relative intensity of emission fluorescence for particular wavelength. CFP and YFP in the mixture are held outside of 100 Å. CFP and YFP in the C–Y dimer are held within 100 Å. The two samples are illuminated by the same excitation light with a wavelength of 440 nm.

Fig. 2.
Fig. 2.

Experimental setup. The setup consists of a xenon lamp as the excitation light, a fiber coupled to the lamp, a stage to perform the rotation of the imaged object, a CCD camera, and a filter wheel containing the filters to capture the corresponding images. The CCD camera and the rotation stage are under the control of a personal computer.

Fig. 3.
Fig. 3.

Illustration of the tissue-mimicking phantom. (a) Cross section of the phantom; (b) Vertical section at the yellow dashed line depicted in (a). The employed phantom is a glass cylinder (outer diameter 3.0cm) containing 1% intralipid (μa=0.022cm1,μs=17.0cm1 when using blue excitation light). A transparent glass tube (outer diameter 0.4cm) alternatively filled with 50 μL endogenous protein sample, CFP sample, YFP sample, mixture sample, and C–Y dimer sample is immersed at the position about 1.0 cm to the boundary of the phantom.

Fig. 4.
Fig. 4.

Results of the fluorescence reconstruction. (a)–(c) Tomographic images of CFP sample in (a) CFP channel, (b) YFP channel, and (c) FRET channel; (d)–(f) tomographic images of YFP sample in the three channels; (g)–(i) tomographic images of the mixture sample in the three channels. (j)–(l) Tomographic images of C–Y dimer sample in the three channels. All the images, depicted in the same color scale, are taken from the same slice of the phantom. The red, outer circle depicts the boundary of the phantom, and the blue, inner circle depicts the actual position of the proteins.

Fig. 5.
Fig. 5.

Reconstruction results of the FRET distribution. (a) 3D (left panel) and 2D (right panel) FRET distribution of the mixture; (b) 3D (left panel) and 2D (right panel) FRET distribution of the dimer. The FR of the mixture (1) is much smaller than that of the dimer (7).

Tables (1)

Tables Icon

Table 1. Three Channels and Corresponding Filters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{·[D(r)G(r)]+μa(r)G(r)=δ(rrs)rΩ2qD(r)G(r)n⃗+G(r)=0rΩ,
ϕfl=Wn,
FR=FADFA=SFRET(DA)RD1·SCFP(DA)RA1·[SYFP(DA)RD2·SCFP(DA)],

Metrics