Abstract

An all-optical switch composed of two interacting nanoparticles in front of an optical dielectric slab waveguide is proposed. An incident optical signal is coupled to the optical waveguide after scattering by the two nanoparticles. The scattered fields interfere constructively or destructively depending on the degree of optical transparency the nanoparticles induced by an optical control signal. The considered nanoparticles have a metallic core coated by an outer shell with three-level clusters such that the nanoparticles can exhibit electromagnetically induced transparency. A dipole-approximation model-based analysis reveals that a high rejection ratio can be achieved using the proposed configuration.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
    [CrossRef]
  2. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photon. 4, 3–5 (2010).
    [CrossRef]
  3. S. A. Maier, Plasmonic: Fundamentals and Applications (Springer, 2007).
  4. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
    [CrossRef]
  5. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
    [CrossRef]
  6. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
    [CrossRef]
  7. G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
    [CrossRef]
  8. A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
    [CrossRef]
  9. R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996).
    [CrossRef]
  10. S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001).
    [CrossRef]
  11. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
    [CrossRef]
  12. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006).
    [CrossRef]
  13. P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16, 10956–10961 (2008).
    [CrossRef]
  14. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
    [CrossRef]
  15. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic device,” IEEE J. Select. Top. Quantum Electron. 12, 1214–1220 (2006).
    [CrossRef]
  16. S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Select. Top. Quantum Electron. 12, 1671–1677 (2006).
    [CrossRef]
  17. D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
    [CrossRef]
  18. G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
    [CrossRef]
  19. N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
    [CrossRef]
  20. C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on the metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
    [CrossRef]
  21. J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006).
    [CrossRef]
  22. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
    [CrossRef]
  23. V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt. 39, 853–861 (1992).
    [CrossRef]
  24. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989).
    [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  26. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).
  27. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 2002).

2012

G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
[CrossRef]

2011

C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on the metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

2010

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photon. 4, 3–5 (2010).
[CrossRef]

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

2009

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

2008

P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16, 10956–10961 (2008).
[CrossRef]

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
[CrossRef]

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
[CrossRef]

2007

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[CrossRef]

2006

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic device,” IEEE J. Select. Top. Quantum Electron. 12, 1214–1220 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Select. Top. Quantum Electron. 12, 1671–1677 (2006).
[CrossRef]

M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006).
[CrossRef]

J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006).
[CrossRef]

2004

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

2003

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

2002

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

2001

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001).
[CrossRef]

1996

R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996).
[CrossRef]

1992

V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt. 39, 853–861 (1992).
[CrossRef]

1989

Afzali-Kusha, A.

G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
[CrossRef]

Andrekson, P. A.

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[CrossRef]

Beggs, D. M.

Birnboim, M. H.

Debrus, S.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

Dorren, H. J. S.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Farrell, P. M.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
[CrossRef]

Ghatak, A.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 2002).

Gong, Y.

Gopal, A. V.

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

Hao, Z.-H.

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

Hasama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Heongkyu,

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Hinton, K.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
[CrossRef]

Hsiao, V. K. S.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
[CrossRef]

Huang, T. J.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
[CrossRef]

Huug de Waardt, J.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Ishikawa, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

Iwamura, H.

R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Juluri, B. K.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
[CrossRef]

Kasai, J.

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

Kawamura, Y.

R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996).
[CrossRef]

Kawashima, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Khoe, G.-D.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Kim, N.-C.

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

Krauss, T. F.

Lafait, J.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

Li, J.-B.

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

Li, Z.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Liu, X.

Lu, H.

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic device,” IEEE J. Select. Top. Quantum Electron. 12, 1214–1220 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Select. Top. Quantum Electron. 12, 1671–1677 (2006).
[CrossRef]

S. A. Maier, Plasmonic: Fundamentals and Applications (Springer, 2007).

Mao, D.

Markel, V. A.

V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt. 39, 853–861 (1992).
[CrossRef]

Mei, T.

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Milian, C.

C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on the metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photon. 4, 3–5 (2010).
[CrossRef]

Ming, H.

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Mishra, A. K.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Mørk, J.

Mozume, T.

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001).
[CrossRef]

Neeves, A. E.

Nielsen, M. L.

Nishitani, T.

O’Faolain, L.

Oda, S.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

Palpant, B.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

Pincon, N.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

Prot, D.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

Raskutti, G.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
[CrossRef]

Rostami, A.

G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
[CrossRef]

Rostami, G.

G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
[CrossRef]

Sakaguchi, J.

Shahabadi, M.

G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
[CrossRef]

Simoyama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

Skryabin, D. V.

C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on the metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

Stout, D. B.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

Sunnerud, H.

Suzuki, R.

Tajima, K.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001).
[CrossRef]

Takahashi, R.

R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996).
[CrossRef]

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 2002).

Tucker, R. S.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
[CrossRef]

Ueno, Y.

M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001).
[CrossRef]

Wang, L.

Wang, P.

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Wang, Q.-Q.

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

White, T. P.

Xiao, J. J.

J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006).
[CrossRef]

Yakubo, K.

J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006).
[CrossRef]

Yang, J.

Yang, X.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

Yang, Z.-J.

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

Yoshida, H.

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

Yu, K. W.

J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006).
[CrossRef]

Yuan, G. H.

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Yuan, X-C.

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Zhang, D. G.

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
[CrossRef]

Zheng, Y. B.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
[CrossRef]

Adv. Mater.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
[CrossRef]

Appl. Phys. Lett.

R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001).
[CrossRef]

N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[CrossRef]

C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on the metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006).
[CrossRef]

IEEE J. Quantum Electron.

A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004).
[CrossRef]

IEEE J. Select. Top. Quantum Electron.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008).
[CrossRef]

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic device,” IEEE J. Select. Top. Quantum Electron. 12, 1214–1220 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Select. Top. Quantum Electron. 12, 1671–1677 (2006).
[CrossRef]

J. Mod. Opt.

V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt. 39, 853–861 (1992).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002).
[CrossRef]

G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
[CrossRef]

Nat. Photon.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photon. 4, 3–5 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Nano. Fund. Appl.

G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012).
[CrossRef]

Sci. Am.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007).
[CrossRef]

Other

S. A. Maier, Plasmonic: Fundamentals and Applications (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Geometry of two interacting core-shell nanoparticles.

Fig. 2.
Fig. 2.

Slab optical waveguide.

Fig. 3.
Fig. 3.

Topology of nanoscale optical switch.

Fig. 4.
Fig. 4.

(a) Dispersion curves for the TE modes; (b) TE mode profiles.

Fig. 5.
Fig. 5.

Controlling the absolute value of the scattered electric field by applying a pump field at the input terminal of the slab waveguide.

Fig. 6.
Fig. 6.

Profile of scattered electric field in z-direction and x-direction.

Fig. 7.
Fig. 7.

Profile of electric field between particles.

Fig. 8.
Fig. 8.

Controlling the scattered electric field with applying pump field.

Fig. 9.
Fig. 9.

Electric field versus angular frequency.

Fig. 10.
Fig. 10.

Coupling coefficient between the scattered electric field from the interacting nanoparticles to the slab waveguide.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E1,2(r1,2)=α1,2Etotal(r1,2),
α1,2=4πε0εHb1,23εSεa1,2-εHεb1,2εSεa1,2+2εHεb1,2,
εa1,2=εc(3-2f1,2)+2f1,2εs,
εb1,2=εcf1,2+εs(3f1,2),
f1,2=1(ab)1,23.
Ep1,2(r,ω)=14πε0εH(k2(n×p)×n1r+[3n(n·p)-p](1r3-ikr2))ei(k·r-ωt),
Eext(r,t)=E0xexp[i(k·r-ωt)].
Ey(x)={ACos(K·T/2-ϕ)e-σ(x-T/2),(x>T/2)ACos(K·x-ϕ),(-T/2xT/2)ACos(K·T/2+ϕ)eς(x+T/2),(x<T/2),
{K=k2nf2β2,σ=β2-k2nc2,ς=β2k2ns2,
2ν1b=mπ+tan1b1b+tan1b+γ1b,
b=ne2ns2nf2ns2,v=k·T2nf2ns2,
η=-T2+T2E*(x,0,za)·Ey(x)dx-+|E(x,0,za)|2dx-+|Ey(x)|2dx,

Metrics