Abstract

We apply femtosecond laser direct writing in photopolymers for manufacturing of conical microlenses and closely packed arrays thereof. We demonstrate the fabrication of high optical quality axicons of 15 µm in radius, having 150°, 160°, and 170° cone angles. Their optical properties and performance are modeled using the finite-difference time-domain method and compared with experimentally measured data. Additionally, optimization of the laser direct writing parameters regarding these types of micro-objects is presented. Possible applications of closely packed arrays of axicon microlenses are discussed, having potential attractivity in the fields of modern microscopy, light-based material processing, particle manipulation in microfluidic, and optofluidic applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
    [CrossRef]
  2. R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011).
    [CrossRef]
  3. L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
    [CrossRef]
  4. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003).
    [CrossRef]
  5. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
    [CrossRef]
  6. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487–2499 (2009).
    [CrossRef]
  7. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
    [CrossRef]
  8. C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
    [CrossRef]
  9. J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  10. S. K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
    [CrossRef]
  11. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited],” Opt. Mater. Express 1, 783–795 (2011).
    [CrossRef]
  12. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef]
  13. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1, 614–624 (2011).
    [CrossRef]
  14. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
    [CrossRef]
  15. D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
    [CrossRef]
  16. Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
    [CrossRef]
  17. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
    [CrossRef]
  18. J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
    [CrossRef]
  19. W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
    [CrossRef]
  20. G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
    [CrossRef]
  21. A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [CrossRef]
  22. I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
    [CrossRef]
  23. M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
    [CrossRef]
  24. M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010).
    [CrossRef]
  25. A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
    [CrossRef]
  26. K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
    [CrossRef]
  27. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
    [CrossRef]
  28. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
    [CrossRef]
  29. G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
    [CrossRef]
  30. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
    [CrossRef]
  31. K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
    [CrossRef]
  32. M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
    [CrossRef]
  33. M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
    [CrossRef]
  34. www.rsoftdesign.com .

2011

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011).
[CrossRef]

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited],” Opt. Mater. Express 1, 783–795 (2011).
[CrossRef]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited],” Opt. Mater. Express 1, 614–624 (2011).
[CrossRef]

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
[CrossRef]

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

2010

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010).
[CrossRef]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[CrossRef]

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[CrossRef]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
[CrossRef]

2009

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487–2499 (2009).
[CrossRef]

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

2008

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

2006

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
[CrossRef]

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

2005

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

2004

C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[CrossRef]

2003

S. K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003).
[CrossRef]

1997

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Atwater, H. A.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Atwater, J. H.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Baldacchini, T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[CrossRef]

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Beresna, M.

Bian, H.

Bickauskaite, G.

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[CrossRef]

Cabrini, S.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Candeloro, P.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Candiani, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

Carpentiero, A.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003).
[CrossRef]

Chen, C.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Chen, F.

Chen, Q. D.

W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

Cheng, Y.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Chichkov, B. N.

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Cojoc, D.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Cojoc, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Das, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Das, S.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011).
[CrossRef]

De Angelis, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

De Nicola, S.

Degiorgio, V.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Di Fabrizio, E.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Eah, S. K.

S. K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

Fang, H. H.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Farrer, R. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[CrossRef]

Farsari, M.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
[CrossRef]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Ferraro, P.

Finizio, A.

Fischer, J.

Fotakis, C.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Fourkas, J. T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[CrossRef]

Gadonas, R.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

Gaidukeviciute, A.

K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
[CrossRef]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Garcia de Abajo, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Gecevicius, M.

Gentile, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Giakoumaki, A.

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Gilbergs, H.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

Gray, D.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Grilli, S.

Guo, L.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Guo, R.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011).
[CrossRef]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
[CrossRef]

He, F.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Hou, C.

Hou, X.

Huang, W.

Jhe, W.

S. K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

Jiang, T.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[CrossRef]

Jiao, J.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

Juodkazis, S.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Kabouraki, E.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kawata, S.

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[CrossRef]

Kazansky, P. G.

Kontenis, L.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

Kosten, E.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

LaFratta, C. N.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[CrossRef]

Li, A.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Li, A. W.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

Li, J.

Li, Y.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Liang, W.

Liberale, C.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003).
[CrossRef]

Lin, W. F.

Liu, H.

MacCraith, B.

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Malinauskas, M.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[CrossRef]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

Maruo, S.

Miccio, L.

Midorikawa, K.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Mora, S.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Nakamura, O.

Niu, G.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Niu, L.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Niu, L. G.

W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Ovsianikov, A.

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Paipulas, D.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

Parsons, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Paturzo, M.

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Piskarskas, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

Pissadakis, S.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

Polman, A.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Prasciolu, M.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Purlys, V.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

Qiao, L.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Reinhardt, C.

K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

Rutkauskas, M.

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

Sakellari, I.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Si, J.

Song, J. F.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

Spinelli, P.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Sugioka, K.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Sun, H. B.

W. F. Lin, Q. D. Chen, L. G. Niu, T. Jiang, W. Q. Wang, and H. B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

Takada, K.

K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

Takeyasu, N.

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Terzaki, K.

Vamvakaki, M.

K. Terzaki, N. Vasilantonakis, A. Gaidukevičiūtė, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1, 586–597 (2011).
[CrossRef]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Van de Groep, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Van Lare, C.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

Vasilantonakis, N.

Vengris, M.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

Vespini, V.

Viertl, J.

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Wang, C.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Wang, D.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Wang, R.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Wang, W. Q.

Wang, X.

Wegener, M.

Wu, D.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

Wu, S.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Wu, S. Z.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Xia, A.

Xia, H.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

Xiao, S.

Yang, H.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003).
[CrossRef]

Yang, Q.

Yu, Y.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Yuan, D.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011).
[CrossRef]

Yuan, X. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Zhai, X.

Zhang, L. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Žukauskas, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[CrossRef]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanism of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

ACS Nano

A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Appl. Phys. A

I. Sakellari, A. Gaidukevičiūtė, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[CrossRef]

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A 102, 179–183 (2011).
[CrossRef]

Appl. Phys. Lett.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser microfabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[CrossRef]

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

K. Takada, H. B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, “100% fill-factor aspheric microlenses arrays (AMLA) with sub-20 nm precision,” IEEE Photon. Technol. Lett. 21, 1535–1537 (2009).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21, 015010 (2011).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775–781 (2003).
[CrossRef]

J. Opt.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001(2010).
[CrossRef]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
[CrossRef]

J. Phys. Chem. B

C. N. LaFratta, T. Baldacchini, R. A. Farrer, and J. T. Fourkas, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[CrossRef]

Lith. J. Phys.

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[CrossRef]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[CrossRef]

Metamaterials

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials 5, 135–140 (2011).
[CrossRef]

Microelectron. Eng.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Opt. Commun.

G. Niu, D. Wang, T. Jiang, S. Z. Wu, A. W. Li, and J. F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 284, 777–781 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Rev. Sci. Instrum.

S. K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

Other

www.rsoftdesign.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic drawing of the conical microlens, (b) top and (c) side view of the laser beam scanning algorithm, and (d) model for the calculation of voxel’s overlap degree.

Fig. 2.
Fig. 2.

Optical characterization setup for single and arrays of conical microlenses.

Fig. 3.
Fig. 3.

SEM images of the conical microlenses under 75° viewing angle with cone angles of (a) 150°, (b) 160°, (c) 170° and deviation of experimental profile (Δh) according to theoretical profile for the (d) type I, (e) type II, and (f) type III conical microlenses (d is a diameter of the conical microlens).

Fig. 4.
Fig. 4.

Light intensity distribution after propagation through the type I, II, and III conical microlenses at various longitudinal distances recorded with a CCD camera. Scale bar, 5 μm.

Fig. 5.
Fig. 5.

Normalized light intensity distribution of the Bessel beam central spot of the type I, II, and III conical microlenses at various longitudinal distances.

Fig. 6.
Fig. 6.

Distributions of the electric field density of a plane wave propagated through type I, II, and III conical microlenses in the xz plane. The field is recorded 800 fs after starting the wave propagation at z=0.7μm. The corresponding axicon heights are (a) 3.88 μm (type I), (b) 2.61 μm (type II), and 1.31 μm (type III).

Fig. 7.
Fig. 7.

Comparison of the electric field densities in the xz plane (see Fig. 6) for the type I axicon (height 3.88 μm) with and without an additional tip. The maximum of the central lobe intensity shifts by D=22μm away from the reference plane when the additional spherical tip is taken into account, appearing in the real conical lenses as a fabricational artifact.

Fig. 8.
Fig. 8.

FDTD simulation of the electric field density in the xy plane perpendicular to the optical axis in distances of (a) 20 μm, (b) 30 μm, and (c) 50 μm. The simulational results correspond to the experimental measurements presented in Fig. 4.

Fig. 9.
Fig. 9.

(a) Array of the hexagonal conical microlenses, (b) the measured profile and (c) its deviation from theoretical profile of the array along the dashed line in (a).

Fig. 10.
Fig. 10.

(a) Optical characterization of the array of the hexagonal type I conical microlenses: an array of the focal spots obtained at 65 μm distance from the surface of the cover glass, (b) normalized light intensity distribution, and (c) an image of the text mask “VU LRC” at 65 μm distance. (inset) SEM image of the text mask.

Tables (1)

Tables Icon

Table 1. Geometrical Parameters of Type I, II, and III Conical Microlensesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β=180°2γ,
δ=ddzd×ldxl,
S(r,tp)=ϵ|E(r,tp)|2.

Metrics