Abstract

We apply femtosecond laser direct writing in photopolymers for manufacturing of conical microlenses and closely packed arrays thereof. We demonstrate the fabrication of high optical quality axicons of 15 µm in radius, having 150°, 160°, and 170° cone angles. Their optical properties and performance are modeled using the finite-difference time-domain method and compared with experimentally measured data. Additionally, optimization of the laser direct writing parameters regarding these types of micro-objects is presented. Possible applications of closely packed arrays of axicon microlenses are discussed, having potential attractivity in the fields of modern microscopy, light-based material processing, particle manipulation in microfluidic, and optofluidic applications.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Simple reflow technique for fabrication of a microlens array in solgel glass

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov
Opt. Lett. 28(9) 731-733 (2003)

Laser direct-write technique for fabricating microlens arrays on soda-lime glass with a Nd:YVO4 laser

Daniel Nieto, M. Teresa Flores-Arias, Gerard M. O’Connor, and Carlos Gomez-Reino
Appl. Opt. 49(26) 4979-4983 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription