J. Jiang, J. Cheng, Y. Zhou, and G. Chen, “Clustering-driven residue filter for profile measurement system,” J. Opt. Soc. Am. A 28, 214–221 (2011).

[CrossRef]

S. Heshmat, S. Tomioka, and S. Nishiyama, “A reliable phase unwrapping algorithm based on rotational and direct compensators,” Appl. Opt. 50, 6225–6233 (2011).

[CrossRef]

M. Costantine, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998).

[CrossRef]

J. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995).

[CrossRef]

R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995).

[CrossRef]

M. Arai, T. Adachi, and H. Matsumoto, “Highly accurate analysis by boundary element method based on uniform gradient condition,” Trans. Jpn. Soc. Mech. Eng. A 61, 161–168 (1995), in Japanese.

[CrossRef]

K. E. Perry and J. McKelvie, “A comparison of phase shifting and Fourier methods in the analysis of discontinuous fringe patterns,” Opt. Lasers Eng. 19, 269–284 (1993).

[CrossRef]

M. Guiggiani, G. Krishinasamy, T. J. Rudolphi, and F. J. Rizz, “A general algorithm for the numerical solution of hypersingular boundary integral equations,” Trans. ASME 59, 604–614 (1992).

[CrossRef]

H. Takajo and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988).

[CrossRef]

H. Takajo and T. Takahashi, “Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 1818–1827 (1988).

[CrossRef]

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).

[CrossRef]

M. Arai, T. Adachi, and H. Matsumoto, “Highly accurate analysis by boundary element method based on uniform gradient condition,” Trans. Jpn. Soc. Mech. Eng. A 61, 161–168 (1995), in Japanese.

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

M. Arai, T. Adachi, and H. Matsumoto, “Highly accurate analysis by boundary element method based on uniform gradient condition,” Trans. Jpn. Soc. Mech. Eng. A 61, 161–168 (1995), in Japanese.

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

C. A. Brebia and S. Walker, Boundary Element Techniques in Engineering (Newnes-Butterworths, 1980).

M. Costantine, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998).

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), pp. 52–54.

D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).

[CrossRef]

D. C. Ghiglia and L. A. Romero, “Direct phase estimation from phase differences using fast elliptic partial differential equation solvers,” Opt. Lett. 14, 1107–1109 (1989).

[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

M. Guiggiani, G. Krishinasamy, T. J. Rudolphi, and F. J. Rizz, “A general algorithm for the numerical solution of hypersingular boundary integral equations,” Trans. ASME 59, 604–614 (1992).

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

S. Heshmat, S. Tomioka, and S. Nishiyama, “A reliable phase unwrapping algorithm based on rotational and direct compensators,” Appl. Opt. 50, 6225–6233 (2011).

[CrossRef]

S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama, “Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points,” Appl. Opt. 49, 4735–4745 (2010).

[CrossRef]

R. Yamaki and A. Hirose, “Singularity-spreading phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 45, 3240–3251 (2007).

[CrossRef]

R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995).

[CrossRef]

J. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995).

[CrossRef]

J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989).

[CrossRef]

M. Guiggiani, G. Krishinasamy, T. J. Rudolphi, and F. J. Rizz, “A general algorithm for the numerical solution of hypersingular boundary integral equations,” Trans. ASME 59, 604–614 (1992).

[CrossRef]

M. Arai, T. Adachi, and H. Matsumoto, “Highly accurate analysis by boundary element method based on uniform gradient condition,” Trans. Jpn. Soc. Mech. Eng. A 61, 161–168 (1995), in Japanese.

[CrossRef]

K. E. Perry and J. McKelvie, “A comparison of phase shifting and Fourier methods in the analysis of discontinuous fringe patterns,” Opt. Lasers Eng. 19, 269–284 (1993).

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), pp. 52–54.

S. Heshmat, S. Tomioka, and S. Nishiyama, “A reliable phase unwrapping algorithm based on rotational and direct compensators,” Appl. Opt. 50, 6225–6233 (2011).

[CrossRef]

S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama, “Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points,” Appl. Opt. 49, 4735–4745 (2010).

[CrossRef]

S. Tomioka and S. Nisiyama, “Analytical regularization of hypersingular integral for Helmholtz equation in boundary element method,” Eng. Anal. Bound. Elem. 34, 393–404 (2010).

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

K. E. Perry and J. McKelvie, “A comparison of phase shifting and Fourier methods in the analysis of discontinuous fringe patterns,” Opt. Lasers Eng. 19, 269–284 (1993).

[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

M. Guiggiani, G. Krishinasamy, T. J. Rudolphi, and F. J. Rizz, “A general algorithm for the numerical solution of hypersingular boundary integral equations,” Trans. ASME 59, 604–614 (1992).

[CrossRef]

M. Guiggiani, G. Krishinasamy, T. J. Rudolphi, and F. J. Rizz, “A general algorithm for the numerical solution of hypersingular boundary integral equations,” Trans. ASME 59, 604–614 (1992).

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

S. Heshmat, S. Tomioka, and S. Nishiyama, “A reliable phase unwrapping algorithm based on rotational and direct compensators,” Appl. Opt. 50, 6225–6233 (2011).

[CrossRef]

S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama, “Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points,” Appl. Opt. 49, 4735–4745 (2010).

[CrossRef]

S. Tomioka and S. Nisiyama, “Analytical regularization of hypersingular integral for Helmholtz equation in boundary element method,” Eng. Anal. Bound. Elem. 34, 393–404 (2010).

[CrossRef]

C. A. Brebia and S. Walker, Boundary Element Techniques in Engineering (Newnes-Butterworths, 1980).

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).

[CrossRef]

R. Yamaki and A. Hirose, “Singularity-spreading phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 45, 3240–3251 (2007).

[CrossRef]

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).

[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).

[CrossRef]

J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).

[CrossRef]

B. Breuckmann and W. Thieme, “Computer-aided analysis of holographic interferograms using the phase-shift method,” Appl. Opt. 24, 2145–2149 (1985).

[CrossRef]

J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989).

[CrossRef]

J. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995).

[CrossRef]

R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995).

[CrossRef]

B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing,” Appl. Opt. 38, 5577–5593 (1999).

[CrossRef]

S. A. Karout, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Two-dimensional phase unwrapping using a hybrid genetic algorithm,” Appl. Opt. 46, 730–743 (2007).

[CrossRef]

S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama, “Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points,” Appl. Opt. 49, 4735–4745 (2010).

[CrossRef]

S. Heshmat, S. Tomioka, and S. Nishiyama, “A reliable phase unwrapping algorithm based on rotational and direct compensators,” Appl. Opt. 50, 6225–6233 (2011).

[CrossRef]

D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627–3632 (1991).

[CrossRef]

S. Tomioka and S. Nisiyama, “Analytical regularization of hypersingular integral for Helmholtz equation in boundary element method,” Eng. Anal. Bound. Elem. 34, 393–404 (2010).

[CrossRef]

R. Yamaki and A. Hirose, “Singularity-spreading phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 45, 3240–3251 (2007).

[CrossRef]

M. Costantine, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998).

[CrossRef]

D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).

[CrossRef]

R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977).

[CrossRef]

B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979).

[CrossRef]

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).

[CrossRef]

H. Takajo and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988).

[CrossRef]

H. Takajo and T. Takahashi, “Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 1818–1827 (1988).

[CrossRef]

D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).

[CrossRef]

J. Jiang, J. Cheng, Y. Zhou, and G. Chen, “Clustering-driven residue filter for profile measurement system,” J. Opt. Soc. Am. A 28, 214–221 (2011).

[CrossRef]

K. E. Perry and J. McKelvie, “A comparison of phase shifting and Fourier methods in the analysis of discontinuous fringe patterns,” Opt. Lasers Eng. 19, 269–284 (1993).

[CrossRef]

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).

[CrossRef]

M. Guiggiani, G. Krishinasamy, T. J. Rudolphi, and F. J. Rizz, “A general algorithm for the numerical solution of hypersingular boundary integral equations,” Trans. ASME 59, 604–614 (1992).

[CrossRef]

M. Arai, T. Adachi, and H. Matsumoto, “Highly accurate analysis by boundary element method based on uniform gradient condition,” Trans. Jpn. Soc. Mech. Eng. A 61, 161–168 (1995), in Japanese.

[CrossRef]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide(Society for Industrial and Applied Mathematics, 1992).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), pp. 52–54.

C. A. Brebia and S. Walker, Boundary Element Techniques in Engineering (Newnes-Butterworths, 1980).