Abstract

A new simple and cost-effective method has been developed for the fabrication of both plano-convex and plano-concave lens arrays with potentially important sag heights. The process is based on the use of potassium bromide (KBr) powder. At ambient temperature and under pressure, KBr powder is compressed on a molding die with the desired shape to form a solid lens array. The quality of the lens arrays has been assessed, and we present the first image produced by a converging KBr lens array.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
    [CrossRef]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (Tanida): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310(2004).
    [CrossRef]
  5. J. Duparré, P. Dannberg, P. Schreiber, A. Brouer, and A. Tünnermann, “Thin compound eye camera,” Appl. Opt. 44, 2949–2956 (2005).
    [CrossRef]
  6. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
    [CrossRef]
  7. J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bäuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
    [CrossRef]
  8. G. Druart, N. Guèrineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “ Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
    [CrossRef]
  9. F. de la Barrière, G. Druart, N. Guérineau, G. Lasfargues, M. Fendler, N. Lhermet, and J. Taboury, “Compact infrared wafer-level camera: design and experimental validation,” Appl. Opt. 51, 1049–1060 (2012).
    [CrossRef]
  10. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12, 1643–1655 (2004).
    [CrossRef]
  11. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
    [CrossRef]
  12. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
    [CrossRef]
  13. D. Purdy, “Fabrication of complex micro-optic components using photo-sculpturing through halftone transmission masks,” Appl. Opt. 3, 167–175 (1994).
  14. M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
    [CrossRef]
  15. http://www.suss-microoptics.com .
  16. M. He, X. Yuan, J. Bu, and W. C. Cheong, “Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique,” Opt. Lett. 29, 1007–1009 (2004).
    [CrossRef]
  17. P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, “Two-step process for the fabrication of diffraction limited concave microlens arrays,” Opt. Express 16, 19541–19549 (2008).
    [CrossRef]
  18. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
    [CrossRef]
  19. R. Gläbe, and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602 (2010).
    [CrossRef]
  20. S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).
  21. G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).
  22. D. H. Cha, H.-J. Kim, H. S. Park, Y. Hwang, J.-H. Kim, J.-H. Hong, and K.-S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010).
    [CrossRef]
  23. K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
    [CrossRef]
  24. J. Orava, T. Kohoutek, L. A. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1, 796–802 (2011).
    [CrossRef]
  25. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
    [CrossRef]
  26. M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
    [CrossRef]
  27. T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).
  28. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011).
    [CrossRef]
  29. G. C. Firestone, and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays–an experimental study,” Appl. Opt. 44, 6115–6122 (2005).
    [CrossRef]
  30. A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006).
    [CrossRef]
  31. C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
    [CrossRef]
  32. S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003).
    [CrossRef]
  33. L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
    [CrossRef]
  34. F. Klocke, O. Dambon, and B. Bulla, “Diamond turning of aspheric steel molds for optics replication,” Proc. SPIE 7590, 75900B (2010).
    [CrossRef]
  35. E. D. Palik, Handbook of Optical Constants of Solids(Academic Press, 1991), Vol. II, pp. 989.
  36. L. M. Harwood and C. J. Moody, Experimental Organic Chemistry: Standard and Microscale, 2nd.ed. (Wiley-Blackwell, 1989), Chapt. 5, pp. 292.
  37. http://www.savimex.eu .
  38. http://www.rsp-technology.com .
  39. http://www.taylor-hobson.com/uploads/images/talysurf-cci-6000.pdf .
  40. http://www.altimet.fr .
  41. http://www.stilsa.com/index.htm .
  42. http://www.phasics.fr .
  43. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, pp. 211–228.

2012 (1)

2011 (8)

E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011).
[CrossRef]

J. Orava, T. Kohoutek, L. A. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1, 796–802 (2011).
[CrossRef]

J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bäuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
[CrossRef]

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

2010 (6)

2009 (3)

G. Druart, N. Guèrineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “ Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

2008 (1)

2006 (2)

2005 (2)

2004 (3)

2003 (2)

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003).
[CrossRef]

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2001 (1)

1994 (1)

1991 (1)

M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
[CrossRef]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

1989 (1)

Arnold, C. B.

Bardou, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Bäuer, A.

Bergs, T.

Bian, H.

Binkley, B.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, pp. 211–228.

Bräuer, A.

Brecher, C.

Brouer, A.

Brückner, A.

Bu, J.

Bulla, B.

F. Klocke, O. Dambon, and B. Bulla, “Diamond turning of aspheric steel molds for optics replication,” Proc. SPIE 7590, 75900B (2010).
[CrossRef]

Cha, D. H.

Chang, K. S.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

Chao, C. L.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

Chen, F.

Cheong, W. C.

Chien, H. H.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

Chou, C. P.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

Chou, H. Y.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

Collin, S.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Curatu, C.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).

Curatu, G.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Dambon, O.

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

F. Klocke, O. Dambon, and B. Bulla, “Diamond turning of aspheric steel molds for optics replication,” Proc. SPIE 7590, 75900B (2010).
[CrossRef]

Dannberg, P.

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

de la Barrière, F.

Demmer, A.

Deschamps, J.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Druart, G.

Duparré, J.

Eberhardt, R.

S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Fendler, M.

Firestone, G. C.

Fu, W. Y.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

Fudouzi, H.

Fujii, A.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Gales, M. T.

M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
[CrossRef]

Gebhardt, A.

S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).

Georgiadis, K.

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

Gläbe, R.

R. Gläbe, and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602 (2010).
[CrossRef]

Greer, L. A.

Guérineau, N.

F. de la Barrière, G. Druart, N. Guérineau, G. Lasfargues, M. Fendler, N. Lhermet, and J. Taboury, “Compact infrared wafer-level camera: design and experimental validation,” Appl. Opt. 51, 1049–1060 (2012).
[CrossRef]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Guèrineau, N.

Haïdar, R.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

G. Druart, N. Guèrineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “ Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

Harwood, L. M.

L. M. Harwood and C. J. Moody, Experimental Organic Chemistry: Standard and Microscale, 2nd.ed. (Wiley-Blackwell, 1989), Chapt. 5, pp. 292.

Hasegawa, M.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

He, M.

He, P.

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

Herzig, H. P.

Hong, J.-H.

Hou, C.

Hou, X.

Hsiao, W. T.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

Huang, C.

Huang, C. Y.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

Huang, K. C.

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

Huang, S. W.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Hwang, Y.

Ichioka, Y.

Ishida, K.

Jansen, C.

Kaakkunen, J. J. J.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Kang, S.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003).
[CrossRef]

Kim, H.-J.

Kim, J.-H.

Kitamura, Y.

Klocke, F.

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

F. Klocke, O. Dambon, and B. Bulla, “Diamond turning of aspheric steel molds for optics replication,” Proc. SPIE 7590, 75900B (2010).
[CrossRef]

A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006).
[CrossRef]

Koch, M.

Kohoutek, T.

Kondou, N.

Kumagai, T.

Lang, G. K.

M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
[CrossRef]

Lange, S.

Lasfargues, G.

Lee, K.-S.

Lee, N.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003).
[CrossRef]

Lehmuskero, A.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Leitel, R.

Lhermet, N.

Li, L.

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

Liang, W.

Liu, H.

Lohmann, A. W.

Ma, K. J.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

Merz, M.

Meyer, J.

Miyatake, S.

Miyazaki, D.

Moody, C. J.

L. M. Harwood and C. J. Moody, Experimental Organic Chemistry: Standard and Microscale, 2nd.ed. (Wiley-Blackwell, 1989), Chapt. 5, pp. 292.

Moon, S. D.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003).
[CrossRef]

Morimoto, T.

Moshchalkov, V. V.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Nakayama, S.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Niehaus, F.

Nishioka, T.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Okada, H.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Orava, J.

Paivasaari, K.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic Press, 1991), Vol. II, pp. 989.

Park, H. S.

Pelouard, J. L.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Philipoussis, I.

Pongs, G.

Primot, J.

Purdy, D.

Raynor, J. M.

M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
[CrossRef]

Riemer, O.

R. Gläbe, and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602 (2010).
[CrossRef]

Rommeluère, S.

Ruffieux, P.

Sanchez, E. A.

Scharf, T.

Scheiding, S.

S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).

Scheller, M.

Scherger, B.

Schreiber, P.

Schütz, H.

M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
[CrossRef]

Shogenji, R.

Si, J.

Silvennoinen, M.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Taboury, J.

Tanida, J.

Teraoka, K.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Thétas, S.

Tikhomirov, V. K.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Tinch, D.

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).

Tünnermann, A.

Ueno, T.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Vahimaa, P.

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

Vincent, G.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Voelkel, R.

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Waldmann, M.

Wang, F.

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

Wang, X.

Weible, K. J.

Wiesauer, K.

Winterschladen, M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, pp. 211–228.

Yamada, K.

Yang, Q.

Yi, A. Y.

Yoshimura, M.

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Yuan, X.

Appl. Opt. (12)

D. Purdy, “Fabrication of complex micro-optic components using photo-sculpturing through halftone transmission masks,” Appl. Opt. 3, 167–175 (1994).

A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (Tanida): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310(2004).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Brouer, and A. Tünnermann, “Thin compound eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

G. C. Firestone, and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays–an experimental study,” Appl. Opt. 44, 6115–6122 (2005).
[CrossRef]

A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006).
[CrossRef]

G. Druart, N. Guèrineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “ Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

D. H. Cha, H.-J. Kim, H. S. Park, Y. Hwang, J.-H. Kim, J.-H. Hong, and K.-S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010).
[CrossRef]

E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011).
[CrossRef]

F. de la Barrière, G. Druart, N. Guérineau, G. Lasfargues, M. Fendler, N. Lhermet, and J. Taboury, “Compact infrared wafer-level camera: design and experimental validation,” Appl. Opt. 51, 1049–1060 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Appl. Surf. Sci. (1)

M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011).
[CrossRef]

J. Micromech. Microeng. (2)

C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011).
[CrossRef]

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011).
[CrossRef]

J. Opt. (1)

L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Microelectron. Eng. (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optik & Photonik (1)

S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).

Proc. SPIE (4)

G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).

M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991).
[CrossRef]

R. Gläbe, and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602 (2010).
[CrossRef]

F. Klocke, O. Dambon, and B. Bulla, “Diamond turning of aspheric steel molds for optics replication,” Proc. SPIE 7590, 75900B (2010).
[CrossRef]

SEI Technical Review (1)

T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).

Other (10)

E. D. Palik, Handbook of Optical Constants of Solids(Academic Press, 1991), Vol. II, pp. 989.

L. M. Harwood and C. J. Moody, Experimental Organic Chemistry: Standard and Microscale, 2nd.ed. (Wiley-Blackwell, 1989), Chapt. 5, pp. 292.

http://www.savimex.eu .

http://www.rsp-technology.com .

http://www.taylor-hobson.com/uploads/images/talysurf-cci-6000.pdf .

http://www.altimet.fr .

http://www.stilsa.com/index.htm .

http://www.phasics.fr .

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, pp. 211–228.

http://www.suss-microoptics.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Photograph of the experimental setup used to fabricate KBr lens arrays.

Fig. 2.
Fig. 2.

Illustration of the compressing cell used to mold inorganic compound powder into a lens array (the illustration represents the formation of a plano-concave lens array).

Fig. 3.
Fig. 3.

Transmission of a KBr pellet of thickness 0.5 mm between 2.5 and 25 μm measured with a commercial infrared spectrometer.

Fig. 4.
Fig. 4.

Side view of (a) a plano-convex lens array, (b) a plano-concave lens array (the upper molding die is not represented, because it consists of a flat surface), and (c) top view of the lower molding die (the circles stand for the position of the lenses on the surface of the molding die). t, thickness of the lenses on the optical axis; R, radius of curvature of a lens; s, lens sag height; p, pitch of the lenses; dm, diameter of a lens.

Fig. 5.
Fig. 5.

Molding dies in the aluminum alloy RSA 905 (RSP): (a) for converging lens array, (b) for diverging lens array.

Fig. 6.
Fig. 6.

Developed KBr lens arrays: (a) plano-convex lens array, (b) plano-concave lens array.

Fig. 7.
Fig. 7.

Photograph of a localized zone of the surface of the converging lens array taken with an optical microscope.

Fig. 8.
Fig. 8.

(a) Comparison between the measured plano-concave lens profile and the measured corresponding mold profile; (b) difference of these two profiles.

Fig. 9.
Fig. 9.

(a) Comparison between the measured plano-convex lens profile and the measured corresponding mold profile; (b) difference of these two profiles.

Fig. 10.
Fig. 10.

Illustration of the setup used for wavefront measurements of the KBr lenses. The notations f and ϕ stand for the focal length and the diameter of the lens, respectively.

Fig. 11.
Fig. 11.

Results of the wavefront measurements for a converging and a diverging lens (intensity map and absolute value of phase map; the abbreviation PtV stands for peak-to-valley).

Fig. 12.
Fig. 12.

Illustration of the optical setup used to image a target with a converging KBr lens array.

Fig. 13.
Fig. 13.

First image produced by a converging KBr lens array in the visible spectral range.

Tables (1)

Tables Icon

Table 1. Optical Specifications for the Converging and Diverging Lens Arrays

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

mplano-convex=ρ[πD24(ts)+Nπs3(3Rss2)]
mplano-concave=ρ[πD24(t+s)Nπs3(3Rss2)]
Δsp=(n32n2+2)(n1)8nh4R3,

Metrics