Abstract

The enhancement of optical coherence tomography (OCT) skin images can help dermatologists investigate the morphologic information of the images more effectively. In this paper, we propose an enhancement algorithm with the stages that includes speckle reduction, skin layer detection, and attenuation compensation. A weighted median filter is designed to reduce the level of speckle while preserving the contrast. A novel skin layer detection technique is then applied to outline the main skin layers: stratum corneum, epidermis, and dermis. The skin layer detection algorithm does not make any assumption about the structure of the skin. A model of the light attenuation is then used to estimate the attenuation coefficient of the stratum corneum, epidermis, and dermis layers. The performance of the algorithm has been evaluated qualitatively based on visual evaluation and quantitatively using two no-reference quality metrics: signal-to-noise ratio and contrast-to-noise ratio. The enhancement algorithm is tested on 35 different skin OCT images, which show significant improvements in the quality of the images, especially in the structures at deeper levels.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
    [CrossRef]
  2. M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
    [CrossRef]
  3. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17, 1256–1267 (2009).
    [CrossRef]
  4. M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
    [CrossRef]
  5. A. M. Schmitt, “Principles and application of optical coherent tomography in dermatology.” Dermatology 217, 14–20 (2008).
    [CrossRef]
  6. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9. (2001).
    [CrossRef]
  7. M. R. N. Avanaki and A. Hojjatoleslami, “Speckle reduction with attenuation compensation for skin OCT images enhancement,” in Proceedings of Medical Image Understanding and Analysis (MIUA, 2009), pp. 179–183.
  8. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).
  9. M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
    [CrossRef]
  10. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
    [CrossRef]
  11. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
    [CrossRef]
  12. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999).
    [CrossRef]
  13. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641–655 (2002).
    [CrossRef]
  14. G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995).
    [CrossRef]
  15. R. H. Sherrier and G. Johnson, “Regionally adaptive histogram equalization of the chest,” IEEE Trans. Med. Imaging 6, 1–7 (1987).
    [CrossRef]
  16. R. Highnam and M. Brady, “Model-based image enhancement of far infrared images,” IEEE Trans. Pattern Anal. Machine Intell. 19, 410–417 (1997).
    [CrossRef]
  17. L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998).
    [CrossRef]
  18. N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
    [CrossRef]
  19. X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998).
    [CrossRef]
  20. J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
    [CrossRef]
  21. M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623 (2009).
    [CrossRef]
  22. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
    [CrossRef]
  23. B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
    [CrossRef]
  24. R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
    [CrossRef]
  25. M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
    [CrossRef]
  26. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, and T. Araki, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
    [CrossRef]
  27. P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
    [CrossRef]
  28. J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
    [CrossRef]
  29. C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
    [CrossRef]
  30. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003).
    [CrossRef]
  31. K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
    [CrossRef]
  32. J. Su and W. Dai, “Post-route optimization for improved yield using a rubber-bandwiring model,” in 1997 IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers (IEEE, 1997), pp. 700–706.
  33. Michelson Diagnostics, “How breakthrough multi-beam OCT imaging works,” http://www.md-ltd.co.uk/our-technology.html .
  34. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
    [CrossRef]
  35. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
    [CrossRef]
  36. C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.
  37. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
    [CrossRef]
  38. A. J. Welch and M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2011).
  39. W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).
  40. Y. Feng, R. K. Wang, and J. B. Elder, “Theoretical model of optical coherence tomography for system optimization and characterization,” J. Opt. Soc. Am. A 20, 1792–1803 (2003).
    [CrossRef]
  41. T. B. Fitzpatrick, “Soleil et pau,” J. Med. Esthetics 2, 33–34 (1975).
  42. G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
    [CrossRef]
  43. M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).
  44. M. R. Nasiri-Avanaki and R. Ebrahimpour, “In-service video quality measurements in optical fiber links based on neural network,” J. Neural Network World 17, 457–464 (2007).
  45. T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
    [CrossRef]

2011

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

2010

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

2009

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623 (2009).
[CrossRef]

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17, 1256–1267 (2009).
[CrossRef]

2008

A. M. Schmitt, “Principles and application of optical coherent tomography in dermatology.” Dermatology 217, 14–20 (2008).
[CrossRef]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[CrossRef]

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
[CrossRef]

2007

M. R. Nasiri-Avanaki and R. Ebrahimpour, “In-service video quality measurements in optical fiber links based on neural network,” J. Neural Network World 17, 457–464 (2007).

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

2006

J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
[CrossRef]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, and T. Araki, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[CrossRef]

2005

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
[CrossRef]

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
[CrossRef]

2004

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

2003

N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
[CrossRef]

Y. Feng, R. K. Wang, and J. B. Elder, “Theoretical model of optical coherence tomography for system optimization and characterization,” J. Opt. Soc. Am. A 20, 1792–1803 (2003).
[CrossRef]

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003).
[CrossRef]

2002

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641–655 (2002).
[CrossRef]

2001

1999

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999).
[CrossRef]

J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
[CrossRef]

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

1998

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998).
[CrossRef]

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998).
[CrossRef]

1997

R. Highnam and M. Brady, “Model-based image enhancement of far infrared images,” IEEE Trans. Pattern Anal. Machine Intell. 19, 410–417 (1997).
[CrossRef]

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

1995

G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995).
[CrossRef]

1990

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

1989

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

1988

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

1987

R. H. Sherrier and G. Johnson, “Regionally adaptive histogram equalization of the chest,” IEEE Trans. Med. Imaging 6, 1–7 (1987).
[CrossRef]

1975

T. B. Fitzpatrick, “Soleil et pau,” J. Med. Esthetics 2, 33–34 (1975).

Aber, A.

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

Allain, M.

N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
[CrossRef]

Altmeyer, P.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Araki, T.

Arbogast, K.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Archer, D. F.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Arnfield, M.

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

Avanaki, M.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Avanaki, M. R. N.

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

M. R. N. Avanaki and A. Hojjatoleslami, “Speckle reduction with attenuation compensation for skin OCT images enhancement,” in Proceedings of Medical Image Understanding and Analysis (MIUA, 2009), pp. 179–183.

Baker, J.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Bays, R.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Bilenca, A.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Bisaillon, C. E.

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
[CrossRef]

Blomgren, B.

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

Bohm-Starke, N.

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

Bohren, C.

C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.

Boms, S.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Bouma, B. E.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

Brady, M.

R. Highnam and M. Brady, “Model-based image enhancement of far infrared images,” IEEE Trans. Pattern Anal. Machine Intell. 19, 410–417 (1997).
[CrossRef]

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641–655 (2002).
[CrossRef]

Cahill, L.

G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995).
[CrossRef]

Callahan, M. M.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Cao, W.

W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).

Chen, Z.

Chen-Mok, M.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Cheong, W.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

Chung, T. S.

W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).

Clemann, S.

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Dai, W.

J. Su and W. Dai, “Post-route optimization for improved yield using a rubber-bandwiring model,” in 1997 IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers (IEEE, 1997), pp. 700–706.

Deng, G.

G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995).
[CrossRef]

Desjardins, A. E.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

Dimou, A.

Ebrahimpour, R.

M. R. Nasiri-Avanaki and R. Ebrahimpour, “In-service video quality measurements in optical fiber links based on neural network,” J. Neural Network World 17, 457–464 (2007).

Elder, J. B.

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Ennen, J.

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Falconer, C.

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

Feng, Y.

Fine Olivarius, F.

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Fitzpatrick, T. B.

T. B. Fitzpatrick, “Soleil et pau,” J. Med. Esthetics 2, 33–34 (1975).

Gambichler, T.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Geiser, E.

X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998).
[CrossRef]

Gemert, M. J. C.

A. J. Welch and M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2011).

Ghosn, M. G.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

Glasser, A.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

Goldstein, B.

J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
[CrossRef]

Goussard, Y.

N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
[CrossRef]

Haedersdal, M.

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Heng, P. A.

J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
[CrossRef]

Highnam, R.

R. Highnam and M. Brady, “Model-based image enhancement of far infrared images,” IEEE Trans. Pattern Anal. Machine Intell. 19, 410–417 (1997).
[CrossRef]

Hilliges, M.

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

Hoffmann, K.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Hojjatoleslami, A.

M. R. N. Avanaki and A. Hojjatoleslami, “Speckle reduction with attenuation compensation for skin OCT images enhancement,” in Proceedings of Medical Image Understanding and Analysis (MIUA, 2009), pp. 179–183.

Hojjatoleslami, S.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Hojjatoleslami, S. A.

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

Hong, L.

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998).
[CrossRef]

Hori, Y.

Huffman, D.

C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.

Hughes, M.

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623 (2009).
[CrossRef]

Idier, J.

N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
[CrossRef]

Izatt, J. A.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999).
[CrossRef]

Jacques, S. L.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Jain, A.

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998).
[CrossRef]

Jaspers, S.

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Jemec, G. B.

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[CrossRef]

Jiang, Y.

J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
[CrossRef]

Johannesson, U.

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

Johnson, G.

R. H. Sherrier and G. Johnson, “Regionally adaptive histogram equalization of the chest,” IEEE Trans. Med. Imaging 6, 1–7 (1987).
[CrossRef]

Kreuter, A.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Kulkarni, M. D.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999).
[CrossRef]

Laine, A.

X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998).
[CrossRef]

Laissue, P. P.

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

Lamouche, G.

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
[CrossRef]

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Larin, K. V.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

Leotta, D.

J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
[CrossRef]

Lock-Andersen, J.

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Madjarova, V.

Makita, S.

Matsumoto, M.

Mauck, C. K.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

McPhee, M.

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

Mogensen, M.

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[CrossRef]

Monchalin, J.

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
[CrossRef]

Monnier, P.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Morris, J.

W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).

Morrison, C. S.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Morsy, H. A.

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[CrossRef]

Moussa, G.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Nasiri-Avanaki, M. R.

M. R. Nasiri-Avanaki and R. Ebrahimpour, “In-service video quality measurements in optical fiber links based on neural network,” J. Neural Network World 17, 457–464 (2007).

Nelson, J. S.

Ozcan, A.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

Pan, Z.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Podoleanu, A.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Podoleanu, A. G.

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623 (2009).
[CrossRef]

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
[CrossRef]

Podoleanu, A. Gh.

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

Poulsen, T.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003).
[CrossRef]

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Prahl, S.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

Richards, K.

J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
[CrossRef]

Robert, D.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641–655 (2002).
[CrossRef]

Sakai, S.

Sand, D.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Sand, M.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Sandby-Møller, J.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003).
[CrossRef]

Sanders, J.

J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
[CrossRef]

Sauermann, K.

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

Savary, J. F.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Schmitt, A. M.

A. M. Schmitt, “Principles and application of optical coherent tomography in dermatology.” Dermatology 217, 14–20 (2008).
[CrossRef]

Sherrier, R. H.

R. H. Sherrier and G. Johnson, “Regionally adaptive histogram equalization of the chest,” IEEE Trans. Med. Imaging 6, 1–7 (1987).
[CrossRef]

Star, W. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Sterenborg, H. J. C. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Stock, R.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Stücker, M.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Su, J.

J. Su and W. Dai, “Post-route optimization for improved yield using a rubber-bandwiring model,” in 1997 IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers (IEEE, 1997), pp. 700–706.

Sudheendran, N.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

Sugawara, T.

Tearney, G. J.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

Therkildsen, P.

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Theumann, J. F.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999).
[CrossRef]

Thrane, L.

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[CrossRef]

Tobin, G.

G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995).
[CrossRef]

Tsui, H. T.

J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
[CrossRef]

Tuchin, V. V.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
[CrossRef]

Tulip, J.

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

van den Bergh, H.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Van Gemert, M. J. C.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Veazey, R.

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Vergnole, S.

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
[CrossRef]

Villain, N.

N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
[CrossRef]

Vitkin, A.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Wagnieres, G.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Wan, Y.

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998).
[CrossRef]

Wang, R. K.

Welch, A.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

Welch, A. J.

A. J. Welch and M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2011).

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9. (2001).
[CrossRef]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Wendt, M.

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

Wulf, H. C.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003).
[CrossRef]

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Xie, J.

J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
[CrossRef]

Xu, X.

Yamanari, M.

Yang, W.

W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).

Yasui, T.

Yasuno, Y.

Zhang, J.

Zong, X.

X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998).
[CrossRef]

Zonios, G.

Acta Derm. Venereol.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003).
[CrossRef]

Arch. Dermatol. Res.

T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005).
[CrossRef]

Br. J. Radiol.

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
[CrossRef]

Comput. Methods Programs Biomed.

J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999).
[CrossRef]

Contraception

C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999).
[CrossRef]

Dermatology

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[CrossRef]

A. M. Schmitt, “Principles and application of optical coherent tomography in dermatology.” Dermatology 217, 14–20 (2008).
[CrossRef]

Electron. Lett.

M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623 (2009).
[CrossRef]

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999).
[CrossRef]

IEEE J. Quantum Electron

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006).
[CrossRef]

M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef]

IEEE Trans. Image Process.

G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995).
[CrossRef]

IEEE Trans. Med. Imaging

R. H. Sherrier and G. Johnson, “Regionally adaptive histogram equalization of the chest,” IEEE Trans. Med. Imaging 6, 1–7 (1987).
[CrossRef]

N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003).
[CrossRef]

X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell.

R. Highnam and M. Brady, “Model-based image enhancement of far infrared images,” IEEE Trans. Pattern Anal. Machine Intell. 19, 410–417 (1997).
[CrossRef]

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998).
[CrossRef]

Int. J. Graphics Bioinf. Med. Eng.

M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).

J. Am. Acad. Dermatol.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

J. Biophotonics

M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010).
[CrossRef]

J. Med. Esthetics

T. B. Fitzpatrick, “Soleil et pau,” J. Med. Esthetics 2, 33–34 (1975).

J. Mod. Opt.

M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

J. Neural Network World

M. R. Nasiri-Avanaki and R. Ebrahimpour, “In-service video quality measurements in optical fiber links based on neural network,” J. Neural Network World 17, 457–464 (2007).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Lasers Surg. Med.

R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
[CrossRef]

Micron

B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641–655 (2002).
[CrossRef]

Proc. SPIE

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008).
[CrossRef]

Scanning

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).

Skin Res. Technol.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9. (2001).
[CrossRef]

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002).
[CrossRef]

P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998).
[CrossRef]

Other

J. Su and W. Dai, “Post-route optimization for improved yield using a rubber-bandwiring model,” in 1997 IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers (IEEE, 1997), pp. 700–706.

Michelson Diagnostics, “How breakthrough multi-beam OCT imaging works,” http://www.md-ltd.co.uk/our-technology.html .

A. J. Welch and M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2011).

W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).

C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.

M. R. N. Avanaki and A. Hojjatoleslami, “Speckle reduction with attenuation compensation for skin OCT images enhancement,” in Proceedings of Medical Image Understanding and Analysis (MIUA, 2009), pp. 179–183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Sequential processing steps in the OCT skin image enhancement algorithm.

Fig. 2.
Fig. 2.

Technology used in the Michelson Diagnostic SS-OCT system. A single beam is focused over 1.0 mm, in comparison with four individual beams, each focused over 0.25 mm at adjacent depths [33].

Fig. 3.
Fig. 3.

Averaged smoothed A-line intensity profile obtained from the horizontal rectangle in the OCT skin B-scan image. (The A-line has been calculated from the region between the two horizontal gray lines in the top image.) The three segments represent changes in attenuation coefficient. Red (left), green (middle), and blue (right) lines correspond to the start of stratum corneum, end of epidermis, and start of dermis layers, respectively. L1, L2, and L3 represent the minimum length of Segment #1, Segment #2, and Segment #3, respectively.

Fig. 4.
Fig. 4.

Results of the OCT skin image enhancement algorithm on a fingertip skin image of an Asian male (29 years old) with skin type III. (a) Original image; (b) despeckled image; (c) detection of stratum corneum (SC) layer; (d) finding local peaks in the A-line profile; (e) cumulated occurrence profile image obtained from occurrence profile; (f) SC and epidermis (ED) borders; (g) local peaks in A-line (of inverted image); (h) cumulated occurrence profile image obtained from the occurrence profile (of inverted image); (i) SC and ED borders (of inverted image); (j) presentation of borders (red [top]: SC, green [middle]: end of ED, and blue [bottom]: start of dermis) (the region between the green and blue lines is considered to be a transition area between the end of epidermis and start of dermis) (k) enhanced image, and (l) cleaned enhanced image. The size of the specimen is 1mm(lateral)×1.6mm(axial), measured in air.

Fig. 5.
Fig. 5.

Results of applying our skin layer detection algorithm to four fingertip images. The borders and their color correspond to the boundary between the three segments in the A-line profile shown in Fig. 3.

Fig. 6.
Fig. 6.

(a) OCT B-scan images of the fingertip skin of a 33-year-old light black male (type III) in vivo. The size of the specimen is 1mm(lateral)×1.6mm(axial), measured in air; (b) Image obtained after the despeckling algorithm; (c) Enhanced image after despeckling and the attenuation compensation algorithm; (d) Cleaned enhanced image. The orange arrows show an artery within the dermis that became clearer in the enhanced image (this was pointed out by an expert).

Fig. 7.
Fig. 7.

Comparison between an arbitrary A-line profile of the original and enhanced images shown in Fig. 6.

Fig. 8.
Fig. 8.

(a) OCT B-scan image of the fingertip skin of a 26-year-old female (type II) in vivo; the size of the specimen is 1.24mm(lateral)×1.6mm(axial), measured in air; (b) Image obtained after our despeckling algorithm; (c) Enhanced image after despeckling and the attenuation compensation algorithm; (d) Cleaned enhanced image.

Fig. 9.
Fig. 9.

Quantitative evaluation of the enhancement algorithm. (a) SNR; (b) CNR, for the original (shorter lines) and enhanced (taller lines) images.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

IMedian-filtered(i,j)=17[I(i,j1)+I(i1,j1)+I(i1,j)+I(i1,j+1)+I(i,j+1)+2I(i,j))].
IOccurrence(i,j)=j5j+5[LM(i,j)].
ICumulative Occurrence(i,j)=i5i+5[IOccurrence(i,j)].
Icompensated(i,j)=Iold(i,j)+Iold(i,j)×scale×(α1×z).
Icompensated(i,j)=Iold(i,j)+Iold(i,j)×scale×(α1×L1+α2×z).
Icompensated(i,j)=Iold(i,j)+Iold(i,j)×scale×(α1×L1+α2×L2+α3×z).
SNR=10log10(max(I2)σb2)
CNR=1R(r=1R(μrμb)σr2+σb2),

Metrics