Abstract

A novel side-hole two-core microstructured optical fiber (STMOF) is proposed for hydrostatic pressure sensing. The two solid fiber cores are surrounded by a few small air holes and two large air holes, and are separated by one small air hole in the center of the cross section of the STMOF. The two large air holes that we called side holes essentially provide a built-in transducing mechanism to enhance the pressure-induced index change, which ensures the high sensitivity of the hydrostatic pressure sensor based on the STMOF. Mode coupling between the two fiber cores of the STMOF has been investigated, which provides a pressure-dependent transmission spectrum by injecting a broadband light into one fiber core of the STMOF on one side and detecting output spectrum on another fiber core on the other side. Our simulations show that there is a one-to-one correspondence between the hydrostatic pressure applied on the STMOF and the peak wavelength shift of the transmission spectrum. A hydrostatic pressure sensor based on an 8 cm STMOF has a sensitivity of 0.111nm/Mpa for the measurement range from 0 Mpa to 200 Mpa. The performances of hydrostatic pressure sensors based on STMOFs with different structure parameters are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Optical fiber sensors technologies: Opportunities and—perhaps—pitfalls,” J. Lightwave Technol. 22, 39–50 (2004).
    [CrossRef]
  2. W. J. Bock and A. W. Domanski, “High hydrostatic pressure effects in highly birefringent optical fibers,” J. Lightwave Technol. 7, 1279–1283 (1989).
    [CrossRef]
  3. A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
    [CrossRef]
  4. H. M. Xie, Ph. Dabkiewicz, R. Ulrich, and K. Okamoto, “SHF for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986).
    [CrossRef]
  5. J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
    [CrossRef]
  6. J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296, 276–277 (2002).
    [CrossRef]
  7. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [CrossRef]
  8. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  9. D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700–2705 (2007).
    [CrossRef]
  10. D. Chen and G. Wu, “Highly birefringent photonic crystal fiber based on a double-hole unit,” Appl. Opt. 49, 1682–1686 (2010).
    [CrossRef]
  11. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef]
  12. S. Yang, Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field,” Opt. Express 14, 3015–3023 (2006).
    [CrossRef]
  13. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  14. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15, 15365–15376 (2007).
    [CrossRef]
  15. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
    [CrossRef]
  16. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm,” J. Lightwave Technol. 24, 825–830 (2006).
    [CrossRef]
  17. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
    [CrossRef]
  18. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
    [CrossRef]
  19. Y. S. Shinde and H. K. Gahir, “Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing,” IEEE Photon. Technol. Lett. 20, 279–281 (2008).
    [CrossRef]
  20. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef]
  21. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22, 1367–1373 (2004).
    [CrossRef]
  22. J. Lagsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29, 2473–2475 (2004).
    [CrossRef]
  23. D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett. 23, 1851–1853 (2011).
    [CrossRef]
  24. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
    [CrossRef]
  25. M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, “Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber,” Opt. Express 18, 12076–12087 (2010).
    [CrossRef]
  26. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high-temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
    [CrossRef]
  27. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [CrossRef]
  28. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
    [CrossRef]
  29. J. S. Chiang, N. H. Sun, S. C. Lin, and W. F. Liu, “Analysis of an ultrashort PCF-based polarization splitter,” J. Lightwave Technol. 28, 707–713 (2010).
    [CrossRef]

2012

2011

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett. 23, 1851–1853 (2011).
[CrossRef]

2010

2008

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
[CrossRef]

Y. S. Shinde and H. K. Gahir, “Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing,” IEEE Photon. Technol. Lett. 20, 279–281 (2008).
[CrossRef]

2007

2006

2004

2003

2002

J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296, 276–277 (2002).
[CrossRef]

2000

1999

1998

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
[CrossRef]

1994

1992

A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

1989

W. J. Bock and A. W. Domanski, “High hydrostatic pressure effects in highly birefringent optical fibers,” J. Lightwave Technol. 7, 1279–1283 (1989).
[CrossRef]

1986

Arriaga, J.

Bang, O.

Bennett, P. J.

Birks, T. A.

Bjarklev, A.

Bock, W. J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
[CrossRef]

W. J. Bock and A. W. Domanski, “High hydrostatic pressure effects in highly birefringent optical fibers,” J. Lightwave Technol. 7, 1279–1283 (1989).
[CrossRef]

Broderick, N. G. R.

Chen, D.

Chen, J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

Chen, K. P.

Chen, L.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett. 23, 1851–1853 (2011).
[CrossRef]

Chen, R.

Chen, T.

Chen, W.

Chiang, J. S.

Culshaw, B.

Dabkiewicz, Ph.

Demokan, M. S.

Domanski, A. W.

W. J. Bock and A. W. Domanski, “High hydrostatic pressure effects in highly birefringent optical fibers,” J. Lightwave Technol. 7, 1279–1283 (1989).
[CrossRef]

Dong, X.

Eftimov, T.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

Fang, X.

A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Fu, H. Y.

Gahir, H. K.

Y. S. Shinde and H. K. Gahir, “Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing,” IEEE Photon. Technol. Lett. 20, 279–281 (2008).
[CrossRef]

Hasegawa, T.

He, S.

A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Hu, G.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett. 23, 1851–1853 (2011).
[CrossRef]

Huang, W. P.

Jewart, C.

Jiang, Z.

Jin, W.

Jin, X.

A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Ju, J.

Khijwania, S. K.

Knight, J. C.

Koshiba, M.

Lagsgaard, J.

Li, H.

Li, J.

Lin, J.

A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Lin, S. C.

Liu, W. F.

Lu, C.

Lu, Y.

Maklad, M.

Mangan, B. J.

Martynkien, T.

Mergo, P.

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
[CrossRef]

Monro, T. M.

Okamoto, K.

Ortigosa-Blanch, A.

Peng, J.

Peng, X.

Richardson, D. J.

Russell, P. S. J.

J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296, 276–277 (2002).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Sasaoka, E.

Sato, Y.

Shao, L. Y.

Shen, L.

Shinde, Y. S.

Y. S. Shinde and H. K. Gahir, “Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing,” IEEE Photon. Technol. Lett. 20, 279–281 (2008).
[CrossRef]

Skryabin, D. V.

Statkiewicz, G.

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

Statkiewicz-Barabach, G.

Sun, N. H.

Swinehart, P. R.

Szczurowski, M. K.

Szpulak, M.

Tam, H. Y.

Ulrich, R.

Urbanczyk, W.

M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, “Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber,” Opt. Express 18, 12076–12087 (2010).
[CrossRef]

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
[CrossRef]

Wadsworth, W. J.

Wai, P. K. A.

Wang, A.

A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Wang, Q.

Webb, D. J.

Wojcik, J.

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
[CrossRef]

Wu, G.

Xie, H. M.

Xie, S.

Yang, C.

Yang, S.

Zhang, B.

Zhang, L.

Zhang, Y.

Appl. Opt.

IEEE Photon. Technol. Lett.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

Y. S. Shinde and H. K. Gahir, “Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing,” IEEE Photon. Technol. Lett. 20, 279–281 (2008).
[CrossRef]

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett. 23, 1851–1853 (2011).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Wojcik, P. Mergo, W. Urbanczyk, and W. J. Bock, “Possibilities of application of the side-hole circular core fiber in monitoring of high pressures,” IEEE Trans. Instrum. Meas. 47, 805–808 (1998).
[CrossRef]

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Nature

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef]

Opt. Commun.

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Science

J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296, 276–277 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Cross section of the proposed STMOF. (b) Enlarged view of the photonic crystal region of the proposed STMOF.

Fig. 2.
Fig. 2.

Confinement loss of STMOFs with one layer of air holes and two layers of air holes with different radii.

Fig. 3.
Fig. 3.

Mode profiles (electric field) for (a) the odd mode and (b) the even mode of the STMOF. (c) Transmission spectrum of an STMOF with a length of 5 cm (black curve) or 8 cm (red curve).

Fig. 4.
Fig. 4.

Stress components in the fiber core region of the STMOFs under 1 Mpa hydrostatic pressure.

Fig. 5.
Fig. 5.

(a) y-polarized and (b) x-polarized transmission spectra of an 8 cm STMOF under different hydrostatic pressure. (c) Peak wavelength (around 1570 nm) of the transmission spectra of an 8 cm STMOF versus hydrostatic pressure.

Fig. 6.
Fig. 6.

Peak wavelength shift of the transmission spectra of 8 cm STMOFs with different structure parameters versus hydrostatic pressure.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Lc=λ/(2|nen0|).
p(λ,Z)=sin2(|neno|Zπ/λ)=sin2(ΔneoZπ/λ).
nx=n0C1σxC2(σy+σz),
ny=n0C1σyC2(σx+σz),
nz=n0C1σzC2(σx+σy),
Δnx=nxn0=C1σxC2(σy+σz),
Δny=nyn0=C1σyC2(σx+σz),
Δnz=nzn0=C1σzC2(σx+σy),

Metrics