Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Side-hole two-core microstructured optical fiber for hydrostatic pressure sensing

Not Accessible

Your library or personal account may give you access

Abstract

A novel side-hole two-core microstructured optical fiber (STMOF) is proposed for hydrostatic pressure sensing. The two solid fiber cores are surrounded by a few small air holes and two large air holes, and are separated by one small air hole in the center of the cross section of the STMOF. The two large air holes that we called side holes essentially provide a built-in transducing mechanism to enhance the pressure-induced index change, which ensures the high sensitivity of the hydrostatic pressure sensor based on the STMOF. Mode coupling between the two fiber cores of the STMOF has been investigated, which provides a pressure-dependent transmission spectrum by injecting a broadband light into one fiber core of the STMOF on one side and detecting output spectrum on another fiber core on the other side. Our simulations show that there is a one-to-one correspondence between the hydrostatic pressure applied on the STMOF and the peak wavelength shift of the transmission spectrum. A hydrostatic pressure sensor based on an 8 cm STMOF has a sensitivity of 0.111nm/Mpa for the measurement range from 0 Mpa to 200 Mpa. The performances of hydrostatic pressure sensors based on STMOFs with different structure parameters are presented.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements

A. Anuszkiewicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont
Opt. Express 20(21) 23320-23330 (2012)

Highly birefringent microstructured optical fiber for distributed hydrostatic pressure sensing with sub-bar resolution

Sergei Mikhailov, Anne Matthes, Jörg Bierlich, Jens Kobelke, Katrin Wondraczek, Francis Berghmans, and Thomas Geernaert
Opt. Express 30(11) 19961-19973 (2022)

Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure

Tadeusz Martynkien, Gabriela Statkiewicz-Barabach, Jacek Olszewski, Jan Wojcik, Paweł Mergo, Thomas Geernaert, Camille Sonnenfeld, Alicja Anuszkiewicz, Marcin K. Szczurowski, Karol Tarnowski, Mariusz Makara, Krzysztof Skorupski, Jacek Klimek, Krzysztof Poturaj, Waclaw Urbanczyk, Tomasz Nasilowski, Francis Berghmans, and Hugo Thienpont
Opt. Express 18(14) 15113-15121 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved