Abstract

In this paper, we report on the development of an intensity-modulated fiber-optic sensor for angular displacement measurement. This sensor was designed to present high sensitivity, linear response, and wide bandwidth and, furthermore, to be simple and low cost. The sensor comprises two optical fibers, a positive lens, a reflective surface, an optical source, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to compare different sensor configurations regarding the core radii of the optical fibers. The simulation results showed that the sensor configurations tested are highly sensitive to small angle variation (in the range of microradians) with nonlinearity less than or equal to 1%. The normalized sensitivity ranges from (0.25×Vmax) to (2.40×Vmax)mV/μrad (where Vmax is the peak voltage of the static characteristic curve), and the linear range is from 194 to 1840 μrad. The unnormalized sensitivity for a reflective surface with reflectivity of 100% was measured as 7.7mV/μrad. The simulations were compared with experimental results to validate the mathematical model and to define the most suitable configuration for ultrasonic detection. The sensor was tested on the characterization of a piezoelectric transducer and as part of a laser ultrasonics setup. The velocities of the longitudinal, shear, and surface waves were measured on aluminum samples as 6.43, 3.17, and 2.96mm/μs, respectively, with an error smaller than 1.3%. The sensor, an alternative to piezoelectric or interferometric detectors, proved to be suitable for detection of ultrasonic waves and to perform time-of-flight measurements and nondestructive inspection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Scruby and L. E. Drain, “Introduction,” in Laser Ultrasonics: Techniques and Applications (Hilger, 1990), pp. 1–36.
  2. A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
    [CrossRef]
  3. J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.
  4. B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
    [CrossRef]
  5. J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelect. Freq. Cont. 33, 485–499 (1986).
    [CrossRef]
  6. J.-P. Monochalin, “Laser-ultrasonics: from the laboratory to industry,” in AIP Conference Proceedings, D. O. Thompson, D. E. Chimenti, L. Poore, C. Nessa, and S. Kallsen, eds. (American Institute of Physics, 2004), pp. 3–31.
  7. S. Bramhavar, B. Pouet, and T. W. Murray, “Superheterodyne detection of laser generated acoustic waves,” Appl. Phys. Lett. 94, 114102 (2009).
    [CrossRef]
  8. P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
    [CrossRef]
  9. T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98, 204103(2011).
    [CrossRef]
  10. R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999).
    [CrossRef]
  11. L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
    [CrossRef]
  12. C. Menadier, C. Kissinger, and H. Adkins, “The photonic sensor,” Instrum. Control Syst. 40, 114–120 (1967).
  13. G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber-optic sensors,” J. Lightwave Technol. 9, 545–551 (1991).
    [CrossRef]
  14. W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sensors Actuators A 49, 51–55 (1995).
    [CrossRef]
  15. A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35, 6767–6774 (1996).
    [CrossRef]
  16. L. Bergougnoux, J. Misguich-Ripault, and J. L. Firpo, “Characterization of an optical fiber bundle sensor,” Rev. Sci. Instrum. 69, 1985–1990 (1998).
    [CrossRef]
  17. J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742–747 (1999).
    [CrossRef]
  18. J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38, 227–232 (1999).
    [CrossRef]
  19. J. A. Bucaro and N. Lagakos, “Lightweight fiber optic microphones and accelerometers,” Rev. Sci. Instrum. 72, 2816–2821 (2001).
    [CrossRef]
  20. P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sensors Actuators A 128, 312–316 (2006).
    [CrossRef]
  21. P. B. Buchade and A. D. Shaligram, “Influence of fiber geometry on the performance of two-fiber displacement sensor,” Sensors Actuators A 136, 199–204 (2007).
    [CrossRef]
  22. S. S. Patil and A. D. Shaligram, “Modeling and experimental studies on retro-reflective fiber optic micro-displacement sensor with variable geometrical properties,” Sensors Actuators A 172, 428–433 (2011).
    [CrossRef]
  23. E. A. Moro, M. D. Todd, and A. D. Puckett, “Using a validated transmission model for the optimization of bundled fiber optic displacement sensors,” Appl. Opt. 50, 6526–6535(2011).
    [CrossRef]
  24. D. Sagrario and P. Mead, “Axial and angular displacement fiber-optic sensor,” Appl. Opt. 37, 6748–6754 (1998).
    [CrossRef]
  25. E. Bois, S. J. Huard, and G. Boisde, “Loss compensated fiber-optic displacement sensor including a lens,” Appl. Opt. 28, 419–420 (1989).
    [CrossRef]
  26. C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672–3675 (1995).
    [CrossRef]
  27. A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
    [CrossRef]
  28. H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8–14 (1997).
    [CrossRef]
  29. M. Feldmann and S. Buttgenbach, “Microoptical distance sensor with integrated microoptics applied to an optical microphone,” in Sensors, 2005 IEEE (IEEE, 2005), pp. 769–771.
  30. J. M. S. Sakamoto and G. M. Pacheco, “Theory and experiment for single lens fiber optical microphone,” Phys. Proc. 3, 651–658 (2010).
    [CrossRef]
  31. A. E. Siegman, “Optical resonators and lens waveguides,” in An Introduction to Lasers and Masers (McGraw-Hill, 1971), pp. 293–345.
  32. A. E. Siegman, “Physical properties of Gaussian beams,” in An Introduction to Lasers and Masers (McGraw-Hill, 1971), pp. 663–697.
  33. H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am. 65, 840–842 (1979).
    [CrossRef]
  34. C. Edwards, G. S. Taylor, and S. B. Palmer, “Ultrasonic generation with a pulsed TEA CO2 laser,” J. Phys. D 22, 1266–1270 (1989).
    [CrossRef]
  35. M. B. Klein and H. Ansari, “Signal processing techniques for nondestructive evaluation using laser ultrasonics,” in Proceedings of IEEE International Symposium on Signal Processing and Information Technology (IEEE, 2009), p. 316.

2011 (4)

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98, 204103(2011).
[CrossRef]

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

S. S. Patil and A. D. Shaligram, “Modeling and experimental studies on retro-reflective fiber optic micro-displacement sensor with variable geometrical properties,” Sensors Actuators A 172, 428–433 (2011).
[CrossRef]

E. A. Moro, M. D. Todd, and A. D. Puckett, “Using a validated transmission model for the optimization of bundled fiber optic displacement sensors,” Appl. Opt. 50, 6526–6535(2011).
[CrossRef]

2010 (2)

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

J. M. S. Sakamoto and G. M. Pacheco, “Theory and experiment for single lens fiber optical microphone,” Phys. Proc. 3, 651–658 (2010).
[CrossRef]

2009 (1)

S. Bramhavar, B. Pouet, and T. W. Murray, “Superheterodyne detection of laser generated acoustic waves,” Appl. Phys. Lett. 94, 114102 (2009).
[CrossRef]

2007 (1)

P. B. Buchade and A. D. Shaligram, “Influence of fiber geometry on the performance of two-fiber displacement sensor,” Sensors Actuators A 136, 199–204 (2007).
[CrossRef]

2006 (1)

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sensors Actuators A 128, 312–316 (2006).
[CrossRef]

2003 (1)

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

2001 (1)

J. A. Bucaro and N. Lagakos, “Lightweight fiber optic microphones and accelerometers,” Rev. Sci. Instrum. 72, 2816–2821 (2001).
[CrossRef]

2000 (1)

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
[CrossRef]

1999 (3)

J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742–747 (1999).
[CrossRef]

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38, 227–232 (1999).
[CrossRef]

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999).
[CrossRef]

1998 (2)

L. Bergougnoux, J. Misguich-Ripault, and J. L. Firpo, “Characterization of an optical fiber bundle sensor,” Rev. Sci. Instrum. 69, 1985–1990 (1998).
[CrossRef]

D. Sagrario and P. Mead, “Axial and angular displacement fiber-optic sensor,” Appl. Opt. 37, 6748–6754 (1998).
[CrossRef]

1997 (2)

H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8–14 (1997).
[CrossRef]

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

1996 (1)

1995 (2)

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sensors Actuators A 49, 51–55 (1995).
[CrossRef]

C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672–3675 (1995).
[CrossRef]

1991 (1)

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber-optic sensors,” J. Lightwave Technol. 9, 545–551 (1991).
[CrossRef]

1989 (2)

C. Edwards, G. S. Taylor, and S. B. Palmer, “Ultrasonic generation with a pulsed TEA CO2 laser,” J. Phys. D 22, 1266–1270 (1989).
[CrossRef]

E. Bois, S. J. Huard, and G. Boisde, “Loss compensated fiber-optic displacement sensor including a lens,” Appl. Opt. 28, 419–420 (1989).
[CrossRef]

1986 (1)

J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelect. Freq. Cont. 33, 485–499 (1986).
[CrossRef]

1979 (1)

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[CrossRef]

1967 (1)

C. Menadier, C. Kissinger, and H. Adkins, “The photonic sensor,” Instrum. Control Syst. 40, 114–120 (1967).

Adkins, H.

C. Menadier, C. Kissinger, and H. Adkins, “The photonic sensor,” Instrum. Control Syst. 40, 114–120 (1967).

Alayli, Y.

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

Albin, S.

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38, 227–232 (1999).
[CrossRef]

Ansari, H.

M. B. Klein and H. Ansari, “Signal processing techniques for nondestructive evaluation using laser ultrasonics,” in Proceedings of IEEE International Symposium on Signal Processing and Information Technology (IEEE, 2009), p. 316.

Beard, P. C.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

Bencheikh, N.

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

Bergougnoux, L.

L. Bergougnoux, J. Misguich-Ripault, and J. L. Firpo, “Characterization of an optical fiber bundle sensor,” Rev. Sci. Instrum. 69, 1985–1990 (1998).
[CrossRef]

Betz, D.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Blouin, A.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Bois, E.

Boisde, G.

Bouchard, P.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Bramhavar, S.

S. Bramhavar, B. Pouet, and T. W. Murray, “Superheterodyne detection of laser generated acoustic waves,” Appl. Phys. Lett. 94, 114102 (2009).
[CrossRef]

Bucaro, J. A.

J. A. Bucaro and N. Lagakos, “Lightweight fiber optic microphones and accelerometers,” Rev. Sci. Instrum. 72, 2816–2821 (2001).
[CrossRef]

Buchade, P. B.

P. B. Buchade and A. D. Shaligram, “Influence of fiber geometry on the performance of two-fiber displacement sensor,” Sensors Actuators A 136, 199–204 (2007).
[CrossRef]

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sensors Actuators A 128, 312–316 (2006).
[CrossRef]

Buttgenbach, S.

M. Feldmann and S. Buttgenbach, “Microoptical distance sensor with integrated microoptics applied to an optical microphone,” in Sensors, 2005 IEEE (IEEE, 2005), pp. 769–771.

Cagneau, B.

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

Chang, K.-M.

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sensors Actuators A 49, 51–55 (1995).
[CrossRef]

Chassagne, L.

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

Chen, S.-L.

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98, 204103(2011).
[CrossRef]

Choquet, M.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Culshaw, B.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Cuomo, F. W.

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber-optic sensors,” J. Lightwave Technol. 9, 545–551 (1991).
[CrossRef]

Dewhurst, R. J.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
[CrossRef]

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999).
[CrossRef]

Dong, F.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Drain, L. E.

C. B. Scruby and L. E. Drain, “Introduction,” in Laser Ultrasonics: Techniques and Applications (Hilger, 1990), pp. 1–36.

Dupont, E.

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

Edwards, C.

C. Edwards, G. S. Taylor, and S. B. Palmer, “Ultrasonic generation with a pulsed TEA CO2 laser,” J. Phys. D 22, 1266–1270 (1989).
[CrossRef]

Faria, J. B.

J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742–747 (1999).
[CrossRef]

Feldmann, M.

M. Feldmann and S. Buttgenbach, “Microoptical distance sensor with integrated microoptics applied to an optical microphone,” in Sensors, 2005 IEEE (IEEE, 2005), pp. 769–771.

Firpo, J. L.

L. Bergougnoux, J. Misguich-Ripault, and J. L. Firpo, “Characterization of an optical fiber bundle sensor,” Rev. Sci. Instrum. 69, 1985–1990 (1998).
[CrossRef]

Guo, L. J.

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98, 204103(2011).
[CrossRef]

Hatrick, D.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
[CrossRef]

He, G.

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber-optic sensors,” J. Lightwave Technol. 9, 545–551 (1991).
[CrossRef]

Héon, R.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Huard, S. J.

Hwang, G.-J.

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sensors Actuators A 49, 51–55 (1995).
[CrossRef]

Khiat, A.

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

Kissinger, C.

C. Menadier, C. Kissinger, and H. Adkins, “The photonic sensor,” Instrum. Control Syst. 40, 114–120 (1967).

Klein, M. B.

M. B. Klein and H. Ansari, “Signal processing techniques for nondestructive evaluation using laser ultrasonics,” in Proceedings of IEEE International Symposium on Signal Processing and Information Technology (IEEE, 2009), p. 316.

Ko, W. H.

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sensors Actuators A 49, 51–55 (1995).
[CrossRef]

Lagakos, N.

J. A. Bucaro and N. Lagakos, “Lightweight fiber optic microphones and accelerometers,” Rev. Sci. Instrum. 72, 2816–2821 (2001).
[CrossRef]

Lamarque, F.

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

Ledbetter, H. M.

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[CrossRef]

Lévesque, D.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Ling, T.

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98, 204103(2011).
[CrossRef]

Mead, P.

Menadier, C.

C. Menadier, C. Kissinger, and H. Adkins, “The photonic sensor,” Instrum. Control Syst. 40, 114–120 (1967).

Mills, T. N.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

Misguich-Ripault, J.

L. Bergougnoux, J. Misguich-Ripault, and J. L. Firpo, “Characterization of an optical fiber bundle sensor,” Rev. Sci. Instrum. 69, 1985–1990 (1998).
[CrossRef]

Monchalin, J.-P.

J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelect. Freq. Cont. 33, 485–499 (1986).
[CrossRef]

Monochalin, J.-P.

J.-P. Monochalin, “Laser-ultrasonics: from the laboratory to industry,” in AIP Conference Proceedings, D. O. Thompson, D. E. Chimenti, L. Poore, C. Nessa, and S. Kallsen, eds. (American Institute of Physics, 2004), pp. 3–31.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Moro, E. A.

Moulder, J. C.

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[CrossRef]

Murfin, A. S.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
[CrossRef]

Murray, T. W.

S. Bramhavar, B. Pouet, and T. W. Murray, “Superheterodyne detection of laser generated acoustic waves,” Appl. Phys. Lett. 94, 114102 (2009).
[CrossRef]

Néron, C.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Pacheco, G. M.

J. M. S. Sakamoto and G. M. Pacheco, “Theory and experiment for single lens fiber optical microphone,” Phys. Proc. 3, 651–658 (2010).
[CrossRef]

Padioleau, C.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Palmer, S. B.

C. Edwards, G. S. Taylor, and S. B. Palmer, “Ultrasonic generation with a pulsed TEA CO2 laser,” J. Phys. D 22, 1266–1270 (1989).
[CrossRef]

Patil, S. S.

S. S. Patil and A. D. Shaligram, “Modeling and experimental studies on retro-reflective fiber optic micro-displacement sensor with variable geometrical properties,” Sensors Actuators A 172, 428–433 (2011).
[CrossRef]

Perret, L.

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

Pierce, S. G.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Pouet, B.

S. Bramhavar, B. Pouet, and T. W. Murray, “Superheterodyne detection of laser generated acoustic waves,” Appl. Phys. Lett. 94, 114102 (2009).
[CrossRef]

Prelle, C.

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

Puckett, A. D.

Reid, B.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

Ruaux, P.

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

Sagrario, D.

Sakamoto, J. M. S.

J. M. S. Sakamoto and G. M. Pacheco, “Theory and experiment for single lens fiber optical microphone,” Phys. Proc. 3, 651–658 (2010).
[CrossRef]

Scruby, C. B.

C. B. Scruby and L. E. Drain, “Introduction,” in Laser Ultrasonics: Techniques and Applications (Hilger, 1990), pp. 1–36.

Shaligram, A. D.

S. S. Patil and A. D. Shaligram, “Modeling and experimental studies on retro-reflective fiber optic micro-displacement sensor with variable geometrical properties,” Sensors Actuators A 172, 428–433 (2011).
[CrossRef]

P. B. Buchade and A. D. Shaligram, “Influence of fiber geometry on the performance of two-fiber displacement sensor,” Sensors Actuators A 136, 199–204 (2007).
[CrossRef]

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sensors Actuators A 128, 312–316 (2006).
[CrossRef]

Shan, Q.

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999).
[CrossRef]

Shimamoto, A.

Siegman, A. E.

A. E. Siegman, “Optical resonators and lens waveguides,” in An Introduction to Lasers and Masers (McGraw-Hill, 1971), pp. 293–345.

A. E. Siegman, “Physical properties of Gaussian beams,” in An Introduction to Lasers and Masers (McGraw-Hill, 1971), pp. 663–697.

Soden, R. A. J.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
[CrossRef]

Sorazu, B.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Tanaka, K.

Taylor, G. S.

C. Edwards, G. S. Taylor, and S. B. Palmer, “Ultrasonic generation with a pulsed TEA CO2 laser,” J. Phys. D 22, 1266–1270 (1989).
[CrossRef]

Thursby, G.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Todd, M. D.

Topçu, S.

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

Wang, H.

H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8–14 (1997).
[CrossRef]

Wu, C.

C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672–3675 (1995).
[CrossRef]

Yang, Y.

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Zheng, J.

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38, 227–232 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

S. Bramhavar, B. Pouet, and T. W. Murray, “Superheterodyne detection of laser generated acoustic waves,” Appl. Phys. Lett. 94, 114102 (2009).
[CrossRef]

T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators,” Appl. Phys. Lett. 98, 204103(2011).
[CrossRef]

Electron. Lett. (1)

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742–747 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelect. Freq. Cont. (1)

J.-P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelect. Freq. Cont. 33, 485–499 (1986).
[CrossRef]

Instrum. Control Syst. (1)

C. Menadier, C. Kissinger, and H. Adkins, “The photonic sensor,” Instrum. Control Syst. 40, 114–120 (1967).

J. Acoust. Soc. Am. (1)

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[CrossRef]

J. Lightwave Technol. (1)

G. He and F. W. Cuomo, “A light intensity function suitable for multimode fiber-optic sensors,” J. Lightwave Technol. 9, 545–551 (1991).
[CrossRef]

J. Phys. D (1)

C. Edwards, G. S. Taylor, and S. B. Palmer, “Ultrasonic generation with a pulsed TEA CO2 laser,” J. Phys. D 22, 1266–1270 (1989).
[CrossRef]

Meas. Sci. Technol. (3)

A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21, 025306 (2010).
[CrossRef]

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999).
[CrossRef]

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208–1219 (2000).
[CrossRef]

Opt. Eng. (2)

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38, 227–232 (1999).
[CrossRef]

H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8–14 (1997).
[CrossRef]

Phys. Proc. (1)

J. M. S. Sakamoto and G. M. Pacheco, “Theory and experiment for single lens fiber optical microphone,” Phys. Proc. 3, 651–658 (2010).
[CrossRef]

Rev. Sci. Instrum. (3)

L. Bergougnoux, J. Misguich-Ripault, and J. L. Firpo, “Characterization of an optical fiber bundle sensor,” Rev. Sci. Instrum. 69, 1985–1990 (1998).
[CrossRef]

C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672–3675 (1995).
[CrossRef]

J. A. Bucaro and N. Lagakos, “Lightweight fiber optic microphones and accelerometers,” Rev. Sci. Instrum. 72, 2816–2821 (2001).
[CrossRef]

Sensors Actuators A (5)

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sensors Actuators A 128, 312–316 (2006).
[CrossRef]

P. B. Buchade and A. D. Shaligram, “Influence of fiber geometry on the performance of two-fiber displacement sensor,” Sensors Actuators A 136, 199–204 (2007).
[CrossRef]

S. S. Patil and A. D. Shaligram, “Modeling and experimental studies on retro-reflective fiber optic micro-displacement sensor with variable geometrical properties,” Sensors Actuators A 172, 428–433 (2011).
[CrossRef]

L. Perret, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sensors Actuators A 165, 189–193 (2011).
[CrossRef]

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sensors Actuators A 49, 51–55 (1995).
[CrossRef]

Strain (1)

B. Sorazu, G. Thursby, B. Culshaw, F. Dong, S. G. Pierce, Y. Yang, and D. Betz, “Optical generation and detection of ultrasound,” Strain 39, 111–114 (2003).
[CrossRef]

Other (7)

C. B. Scruby and L. E. Drain, “Introduction,” in Laser Ultrasonics: Techniques and Applications (Hilger, 1990), pp. 1–36.

J.-P. Monochalin, C. Néron, M. Choquet, A. Blouin, B. Reid, D. Lévesque, P. Bouchard, C. Padioleau, and R. Héon, “Detection of flaws in materials by laser-ultrasonics,” in IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Springer, 2002), pp. 437–450.

J.-P. Monochalin, “Laser-ultrasonics: from the laboratory to industry,” in AIP Conference Proceedings, D. O. Thompson, D. E. Chimenti, L. Poore, C. Nessa, and S. Kallsen, eds. (American Institute of Physics, 2004), pp. 3–31.

M. Feldmann and S. Buttgenbach, “Microoptical distance sensor with integrated microoptics applied to an optical microphone,” in Sensors, 2005 IEEE (IEEE, 2005), pp. 769–771.

A. E. Siegman, “Optical resonators and lens waveguides,” in An Introduction to Lasers and Masers (McGraw-Hill, 1971), pp. 293–345.

A. E. Siegman, “Physical properties of Gaussian beams,” in An Introduction to Lasers and Masers (McGraw-Hill, 1971), pp. 663–697.

M. B. Klein and H. Ansari, “Signal processing techniques for nondestructive evaluation using laser ultrasonics,” in Proceedings of IEEE International Symposium on Signal Processing and Information Technology (IEEE, 2009), p. 316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Sensor head.

Fig. 2.
Fig. 2.

Front view of the sensor head and optical spot.

Fig. 3.
Fig. 3.

Simulated static characteristic curves for the sensors: (a) 4/4, 4/25, and 4/52.5; (b) 25/4, 25/25, and 25/52.5; (c) 52.5/4, 52.5/25, and 52.5/52.5.

Fig. 4.
Fig. 4.

Experimental setup.

Fig. 5.
Fig. 5.

Experimental results: (a) sensor 4/4, (b) sensor 4/25, (c) sensor 4/52.5.

Fig. 6.
Fig. 6.

Experimental results: (a) sensor 25/4, (b) sensor 25/25, (c) sensor 25/52.5.

Fig. 7.
Fig. 7.

Experimental results: (a) sensor 52.5/4, (b) sensor 52.5/25, (c) sensor 52.5/52.5.

Fig. 8.
Fig. 8.

Output signal (top) and input signal (bottom) for the piezoelectric transducer.

Fig. 9.
Fig. 9.

Frequency response of the piezoelectric transducer measured with the 4/4 sensor.

Fig. 10.
Fig. 10.

Linearity of the piezoelectric transducer at 1.02 MHz.

Fig. 11.
Fig. 11.

Longitudinal and shear wave detection on aluminum sample. T, trigger; 1L, first longitudinal wave arrival (after traveling through the thickness once); 3L, second longitudinal wave arrival (after traveling the thickness three times); and 1S, first shear wave arrival.

Fig. 12.
Fig. 12.

Rayleigh wave detection on aluminum sample. T, trigger; R, Rayleigh wave arrival.

Tables (1)

Tables Icon

Table 1. Simulation Resultsa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ξo=sin1(NA/n),
Zo=fLa/tanξo.
[Y2α2]=[1Zo01][101fL1][1Z101][02θ].
Y2(θ)=Kθ,
I(r)=2Piπw2exp(2r2w2),
Po=ΓSRI(r)dSR,
r2=r2+yo22ryocosϕ,
yo(θ)=mKθ,
ϕ(r)=cos1(r2+yo2aR22ryo).
Po=Γ4Piπw20yo+aR0ϕ(r)rexp(2r2w2)dϕdr.
η(θ)=PoPi=Γ4πw20yo(θ)+aRrexp(2r2w2)cos1(r2+yo2(θ)aR22ryo(θ))dr.
η(θo)=Γ4w20aRrexp(2r2w2)dr=Γ[1exp(2aR2w2)].

Metrics