Abstract

With one measurement configuration, existing gloss measurement methodologies are generally restricted to specific gloss levels. A newly developed image-analytical gloss parameter called “clarity” provides the possibility to describe the perceptual result of a broad range of different gloss levels with one setup. In order to analyze and finally monitor the perceived gloss of products, a fast and flexible method also for the automated inspection is highly demanded. The clarity parameter is very fast to calculate and therefore usable for fast in-line surface inspection. Coated metal specimens were deformed by varying degree and polished afterwards in order to study the clarity parameter regarding the quantification of varying surface gloss types and levels. In order to analyze the correlation with the human gloss perception a study was carried out in which experts were asked to assess gloss properties of a series of surface samples under standardized conditions. The study confirmed clarity to exhibit considerably better correlation to the human perception than alternative gloss parameters.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Pointer, “Measuring visual appearance—a framework for the future,” NPL-Report COAM 19 (2003).
  2. L. R. Ingersoll, “A means to measure the glare of paper,” Electr. World 63, 645–647 (1914).
  3. R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18(77), 281 (1937).
  4. D. B. Judd, “Gloss and glossiness,” Am. Dyest. Rep. 26, 234–235 (1937).
  5. R. S. Hunter and D. B. Judd, “Development of a method of classifying paints according to gloss,” ASTM Bull. 97, 11–18 (1939).
  6. H. Schene, Untersuchung über den optisch-physiologischen Eindruck der Oberflächenstruktur von Lackfilmen (Springer Verlag, 1990).
  7. F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
    [CrossRef]
  8. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970).
    [CrossRef]
  9. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).
  10. “Standard test method for specular gloss,” ASTM D523-08 (ASTM International, 2008).
  11. A. Goldschidt and H. J. Streitberger, Basics of Coating Technology (Vincentz Network, 2003).
  12. D. P. Gruber, G. Engel, H. Sormann, A. Schüler, and W. Papousek, “Modeling the absorption behavior of solar thermal collector coatings utilizing graded a-C:H/TiC layers,” Appl. Opt. 48, 1514–1519 (2009).
    [CrossRef]
  13. M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
    [CrossRef]
  14. M. Buder-Stroissnigg, “Umformbare-polymerbeschichtete Bleche—Methodenentwicklung, polymerphysikalische Charakterisierung und Struktur/Eigenschafts-Beziehungenn,” Ph.D. thesis (Montanuniversität Leoben, 2008).
  15. Byk-Gardner GmbH, Wave-scan DOI and glossmeter, http://www.byk.com .
  16. J. Schanda, Colorimetry: Understanding the CIE System(Wiley, 2007).
  17. H. Terstiege, “Artificial daylight for measurement of optical properties of materials,” Color Res. Appl. 14, 131–138 (1989).
    [CrossRef]

2009 (1)

2005 (1)

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

1989 (1)

H. Terstiege, “Artificial daylight for measurement of optical properties of materials,” Color Res. Appl. 14, 131–138 (1989).
[CrossRef]

1987 (1)

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

1970 (1)

1939 (1)

R. S. Hunter and D. B. Judd, “Development of a method of classifying paints according to gloss,” ASTM Bull. 97, 11–18 (1939).

1937 (2)

R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18(77), 281 (1937).

D. B. Judd, “Gloss and glossiness,” Am. Dyest. Rep. 26, 234–235 (1937).

1914 (1)

L. R. Ingersoll, “A means to measure the glare of paper,” Electr. World 63, 645–647 (1914).

Billmeyer, F. W.

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

Buder-Stroissnigg, M.

M. Buder-Stroissnigg, “Umformbare-polymerbeschichtete Bleche—Methodenentwicklung, polymerphysikalische Charakterisierung und Struktur/Eigenschafts-Beziehungenn,” Ph.D. thesis (Montanuniversität Leoben, 2008).

Buder-Stroisznigg, M.

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Engel, G.

Ginsberg, I. W.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).

Goldschidt, A.

A. Goldschidt and H. J. Streitberger, Basics of Coating Technology (Vincentz Network, 2003).

Gruber, D.

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Gruber, D. P.

Hsia, J. J.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).

Hunter, R. S.

R. S. Hunter and D. B. Judd, “Development of a method of classifying paints according to gloss,” ASTM Bull. 97, 11–18 (1939).

R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18(77), 281 (1937).

Ingersoll, L. R.

L. R. Ingersoll, “A means to measure the glare of paper,” Electr. World 63, 645–647 (1914).

Jandel, L.

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Judd, D. B.

R. S. Hunter and D. B. Judd, “Development of a method of classifying paints according to gloss,” ASTM Bull. 97, 11–18 (1939).

D. B. Judd, “Gloss and glossiness,” Am. Dyest. Rep. 26, 234–235 (1937).

Lang, R. W.

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Limperis, T.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).

Nicodemus, F. E.

F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970).
[CrossRef]

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).

O’Donnell, F. X. D.

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

Papousek, W.

Pointer, M. R.

M. R. Pointer, “Measuring visual appearance—a framework for the future,” NPL-Report COAM 19 (2003).

Richmond, J. C.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).

Schanda, J.

J. Schanda, Colorimetry: Understanding the CIE System(Wiley, 2007).

Schene, H.

H. Schene, Untersuchung über den optisch-physiologischen Eindruck der Oberflächenstruktur von Lackfilmen (Springer Verlag, 1990).

Schüler, A.

Sormann, H.

Strauß, B.

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Streitberger, H. J.

A. Goldschidt and H. J. Streitberger, Basics of Coating Technology (Vincentz Network, 2003).

Terstiege, H.

H. Terstiege, “Artificial daylight for measurement of optical properties of materials,” Color Res. Appl. 14, 131–138 (1989).
[CrossRef]

Wallner, G.

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Am. Dyest. Rep. (1)

D. B. Judd, “Gloss and glossiness,” Am. Dyest. Rep. 26, 234–235 (1937).

Appl. Opt. (2)

ASTM Bull. (1)

R. S. Hunter and D. B. Judd, “Development of a method of classifying paints according to gloss,” ASTM Bull. 97, 11–18 (1939).

BHM (1)

M. Buder-Stroisznigg, G. Wallner, D. Gruber, B. Strauß, L. Jandel, and R. W. Lang, “Kunststofftechnische aspekte bei der entwicklung organisch bandbeschichteter stahlbleche für automobilanwendungen,” BHM 150, 293–300 (2005).
[CrossRef]

Color Res. Appl. (2)

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

H. Terstiege, “Artificial daylight for measurement of optical properties of materials,” Color Res. Appl. 14, 131–138 (1989).
[CrossRef]

Electr. World (1)

L. R. Ingersoll, “A means to measure the glare of paper,” Electr. World 63, 645–647 (1914).

J. Res. Natl. Bur. Stand. (1)

R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18(77), 281 (1937).

Other (8)

H. Schene, Untersuchung über den optisch-physiologischen Eindruck der Oberflächenstruktur von Lackfilmen (Springer Verlag, 1990).

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” NBS Monograph 160 (U.S. Department of Commerce/National Bureau of Standards, 1977).

“Standard test method for specular gloss,” ASTM D523-08 (ASTM International, 2008).

A. Goldschidt and H. J. Streitberger, Basics of Coating Technology (Vincentz Network, 2003).

M. R. Pointer, “Measuring visual appearance—a framework for the future,” NPL-Report COAM 19 (2003).

M. Buder-Stroissnigg, “Umformbare-polymerbeschichtete Bleche—Methodenentwicklung, polymerphysikalische Charakterisierung und Struktur/Eigenschafts-Beziehungenn,” Ph.D. thesis (Montanuniversität Leoben, 2008).

Byk-Gardner GmbH, Wave-scan DOI and glossmeter, http://www.byk.com .

J. Schanda, Colorimetry: Understanding the CIE System(Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Measurement setup used for the acquisition of the raw data. A 40 kHz high frequency light source projects homogeneous light through a rectangular aperture onto the surface of a coating.

Fig. 2.
Fig. 2.

(a) Light source reflected in a surface with perfect clarity next to (b) a surface showing light scattering that results in a specific loss of visually perceived clarity.

Fig. 3.
Fig. 3.

(a)  Image matrix of a weakly scattering surface (20mm×50mm) and (b) the corresponding color-coded intensity matrix as 3D plot. (c) For the calculation of the clarity value, a mean “light-to-dark” transition profile is calculated from the intensity matrix. (d) A gradient curve is calculated from the transition curve. The clarity value is determined by the integral over the gradient curve.

Fig. 4.
Fig. 4.

Gradient curve and the integration limits used for the calculation of the clarity values.

Fig. 5.
Fig. 5.

Gloss reduction and formation of wavy structures [short wave (SW): 0.3–1.2 mm and long wave (LW): 1.2–12 mm] of uniaxially stretched organic coated steel sheets.

Fig. 6.
Fig. 6.

Measured DOI and 20° standard gloss values compared to the clarity of coated steel sheets that were uniaxially stretched by increasing degree.

Fig. 7.
Fig. 7.

Influence of a combined grinding and polishing process on the appearance/optical performance of uniaxially stretched organic coated steel sheet. Gloss after polishing as a function of the diamond grit size.

Fig. 8.
Fig. 8.

Measured DOI as a function of the total topcoat abrasion.

Fig. 9.
Fig. 9.

The 3D plot of the captured edge of the aperture, the mean transition curve and the gradient curve, exemplarily for sample 5 (low clarity) and sample 6 (high clarity).

Fig. 10.
Fig. 10.

Measured clarity and DOI values compared to the result of the surface assessment study.

Tables (1)

Tables Icon

Table 1. Polishing Conditions (Polishing Agent, Tool, Treatment Time)

Metrics