Abstract

When monochromatic light passes through a homogeneous absorbing medium, the absorbance is proportional to the growth of concentration and thickness of the medium, which is the Lambert—Beer law. The shade selection of protein solution magnetized for a certain time from different angles makes different absorbance, which does not meet the Lambert—Beer law. Accordingly, we derive that the absorbance A is not only proportional to the concentration and thickness of the medium but also proportional to the light area SS of a certain direction. For the same protein solution, we can obtain the absorbance A of six directions and thus get six values for SS, the relative ratio of which will inevitably reveal plentiful information of the protein shape. The conformation of the protein can be easily drawn out by software (MATLAB 7.0.1). We have drawn out the molecular shape of lysozyme and bovine serum albumin. In brief, we have developed the Lambert—Beer law A=K·C·b·Ss and a new method of exploring protein spatial structure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Sokolov, L. M. Naveira, M. P. Poudel, J. Strohaber, C. S. Trendafilova, W. C. Buck, J. Wang, B. D. Strycker, C. Wang, H. Schuessler, A. Kolomenskii, and G. W. Kattawar, “Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation,” Appl. Opt. 49, 513–519 (2010).
    [CrossRef]
  2. H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
    [CrossRef]
  3. J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
    [CrossRef]
  4. D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
    [CrossRef]
  5. D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
    [CrossRef]
  6. W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
    [CrossRef]
  7. A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
    [CrossRef]
  8. G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
    [CrossRef]

2010 (2)

2002 (1)

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

2000 (2)

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

1996 (1)

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

1988 (1)

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

1974 (1)

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

Abdullyava, S.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Alvager, T.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Balcavage, W. X.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Borkakoti, N.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Bruscaglioni, P.

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

Buck, W. C.

Chang, W-S.

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

Fox, M. T.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Goff, C. W.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Gu, H.-Y.

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

Ivanov, A. S.

A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
[CrossRef]

Karabarbounis, A.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Kattawar, G. W.

King, M. W.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Kolomenskii, A.

Margaritis, L. H.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Messini, N.

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Milburn, D.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Naveira, L. M.

Orengo, C. A.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Panagopoulos, D. J.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Philippetis, A. L.

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Poudel, M. P.

Pshenichnikov, A. F.

A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
[CrossRef]

Schuessler, H.

Sokolov, A. V.

Strohaber, J.

Strycker, B. D.

Swez, J.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Thornton, J. M.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Todd, A. E.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Trendafilova, C. S.

Wang, C.

Wang, J.

Zaccanti, G.

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

Appl. Opt. (1)

Biochem. Biophys. Res. Commun. (3)

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Doc. Ophthalmol. (1)

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

J. Magnetism Magn. Mater. (1)

A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
[CrossRef]

J. Mod. Opt. (1)

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

Nat. Struct. Biol. (1)

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Magnetization method. A shows the orientation of the cuvettes. The surface areas at the south side, the north side, the east side, the west side, the up side, and the down side are referred to as Ss, Sn, Se, Sw, Su, and Sd, respectively. B shows the magnetizing setup: there are four quartz cuvettes of the same type disposed at the middle, serially numbered 1, 2, 3, and 4, and the magnets are disposed at the two sides.

Fig. 2.
Fig. 2.

Patterns showing the effects of magnetic field on absorbance of the protein. A shows the disordered state of the unmagnetized protein in the solution; B shows the orientation of the magnetized protein.

Fig. 3.
Fig. 3.

Schematic diagram of the surface area of protein exposed to light. The surface areas at the south side, the north side, the east side, the west side, the up side, and the down side are respectively referred to as Ss, Sn, Se, Sw, Su, and Sd.

Fig. 4.
Fig. 4.

Schematic diagram showing a monochromatic light passing through a solution.

Fig. 5.
Fig. 5.

Three-dimensional models of lysozyme and BSA in different directions. A, B, C are three-dimensional models of lysozyme in different directions; G is a three-dimensional model of lysozyme from www.biochem.arizona.edu (Department of Chemistry and Biochemistry, University of Arizona). D, E, and F are three-dimensional models of BSA in different directions; H is a three-dimensional modelsof BSA from www.bio-world.com/images/proteins.jpg.

Tables (4)

Tables Icon

Table 1. Effects of Spacing between Magnets on Absorbancea

Tables Icon

Table 2. Change in Absorbance as a Function of Protein Concentration and Magnetization Duration

Tables Icon

Table 3. Measurements of Absorbance in the Six Directions for BSA and Lysozyme

Tables Icon

Table 4. Measurements of Absorbance for BSA and Lysozyme Solution in Motion

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dIb=K1·Ib·dn,
dn=K2·C·dV·Ss=K2·C·S·db·Ss,
dIb=K1·Ib·K2·C·S·db·Ss.
K=K1·K2·S.
dIb=K·Ib·C·db·Ss.
dIbIb=K·C·db·Ss,I0IdIbIb=0bK·C·db·Ss,lnII0=K·C·b·Ss,
A=K·C·b·Ss,
Ss=1K·b·AC,
Ss=K3·AC.
Ss=K4·d2.
K4·d2=K3·AC,d=K3K4·AC.
K=K3K4,
d=K5AC,
deastdwestdsouthdnorthdupddown=A1A2A3A4A5A6.

Metrics