Abstract

When monochromatic light passes through a homogeneous absorbing medium, the absorbance is proportional to the growth of concentration and thickness of the medium, which is the Lambert—Beer law. The shade selection of protein solution magnetized for a certain time from different angles makes different absorbance, which does not meet the Lambert—Beer law. Accordingly, we derive that the absorbance A is not only proportional to the concentration and thickness of the medium but also proportional to the light area SS of a certain direction. For the same protein solution, we can obtain the absorbance A of six directions and thus get six values for SS, the relative ratio of which will inevitably reveal plentiful information of the protein shape. The conformation of the protein can be easily drawn out by software (MATLAB 7.0.1). We have drawn out the molecular shape of lysozyme and bovine serum albumin. In brief, we have developed the Lambert—Beer law A=K·C·b·Ss and a new method of exploring protein spatial structure.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Sokolov, L. M. Naveira, M. P. Poudel, J. Strohaber, C. S. Trendafilova, W. C. Buck, J. Wang, B. D. Strycker, C. Wang, H. Schuessler, A. Kolomenskii, and G. W. Kattawar, “Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation,” Appl. Opt. 49, 513–519 (2010).
    [CrossRef]
  2. H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
    [CrossRef]
  3. J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
    [CrossRef]
  4. D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
    [CrossRef]
  5. D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
    [CrossRef]
  6. W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
    [CrossRef]
  7. A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
    [CrossRef]
  8. G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
    [CrossRef]

2010

2002

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

2000

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

1996

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

1988

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

1974

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

Abdullyava, S.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Alvager, T.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Balcavage, W. X.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Borkakoti, N.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Bruscaglioni, P.

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

Buck, W. C.

Chang, W-S.

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

Fox, M. T.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Goff, C. W.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Gu, H.-Y.

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

Ivanov, A. S.

A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
[CrossRef]

Karabarbounis, A.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Kattawar, G. W.

King, M. W.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Kolomenskii, A.

Margaritis, L. H.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Messini, N.

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Milburn, D.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Naveira, L. M.

Orengo, C. A.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Panagopoulos, D. J.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Philippetis, A. L.

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

Poudel, M. P.

Pshenichnikov, A. F.

A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
[CrossRef]

Schuessler, H.

Sokolov, A. V.

Strohaber, J.

Strycker, B. D.

Swez, J.

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Thornton, J. M.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Todd, A. E.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Trendafilova, C. S.

Wang, C.

Wang, J.

Zaccanti, G.

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

Appl. Opt.

Biochem. Biophys. Res. Commun.

D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun. 298, 95–102 (2002).
[CrossRef]

D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Philippetis, and L. H. Margaritis, “A mechanism for action of oscillating electric fields on cells,” Biochem. Biophys. Res. Commun. 272, 634–640 (2000).
[CrossRef]

W. X. Balcavage, T. Alvager, J. Swez, C. W. Goff, M. T. Fox, S. Abdullyava, and M. W. King, “A mechanism for action of extremely low frequency electromagnetic fields on biological systems,” Biochem. Biophys. Res. Commun. 222, 374–378 (1996).
[CrossRef]

Doc. Ophthalmol.

H.-Y. Gu and W-S. Chang, “The applicability of Lambert—Beer’s law,” Doc. Ophthalmol. 38, 279–282 (1974).
[CrossRef]

J. Magnetism Magn. Mater.

A. S. Ivanov and A. F. Pshenichnikov, “Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids,” J. Magnetism Magn. Mater. 322, 2575–2580 (2010).
[CrossRef]

J. Mod. Opt.

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert—Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242(1988).
[CrossRef]

Nat. Struct. Biol.

J. M. Thornton, A. E. Todd, D. Milburn, N. Borkakoti, and C. A. Orengo, “From structure to function: approaches and limitations,” Nat. Struct. Biol. 7, 991–994 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics